一、目標(biāo):
1.知識(shí)與技能:
用數(shù)格子的辦法體驗(yàn)勾股定理的探索過程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。
2.目標(biāo)與能力:
讓學(xué)生體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。進(jìn)一步發(fā)展學(xué)生的說理和簡(jiǎn)單推理的意識(shí)及能力。
3.情感與態(tài)度:
在探索勾股定理的過程中,體驗(yàn)獲得成功的快樂,鍛煉學(xué)生克服困難的勇氣;通過勾股定理的歷史介紹,激發(fā)學(xué)生的探究意識(shí),培養(yǎng)學(xué)生的愛國(guó)思想。
二、重難點(diǎn)
教學(xué)重點(diǎn):探索勾股定理及定理簡(jiǎn)單應(yīng)用;
教學(xué)難點(diǎn):用拼圖方法證明勾股定理。
三、教學(xué)過程
一、創(chuàng)設(shè)情境,認(rèn)識(shí)勾股定理
1、介紹畢達(dá)哥拉斯在朋友家吃飯時(shí)發(fā)現(xiàn)直角三角形三邊關(guān)系的小故事。
師:我們一起來探究一下這位數(shù)學(xué)偉人的巨大發(fā)現(xiàn)。(引入課題)
2、用數(shù)格子的方法體驗(yàn)勾股定理的探索過程(由特殊到一般)
3、你發(fā)現(xiàn)直角三角形的三條邊有什么關(guān)系?
4、應(yīng)用你的發(fā)現(xiàn),完成表格。
二、學(xué)習(xí)勾股定理
1、定理學(xué)習(xí)
2、演示拼圖動(dòng)畫,生自己得出證明方法
三、應(yīng)用勾股定理
1、例1解析
例1:已知在△ABC中,∠C=Rt ∠,BC=a,AC=b,AB=c.
若a=1,b=2,求c;(2)若a=15,c=17,求b.
思考:用刻度尺和圓規(guī)作一條長(zhǎng)為√5的線段。(在第1小題的基礎(chǔ)上)
2、比一比
(1)直角三角形的兩直角邊為3和4,則斜邊為___
(2)直角三角形的兩條邊為3和4,則這個(gè)直角三角形的周長(zhǎng)為 。
(3)直角三角形中兩條直角邊之比為3:4,且斜邊為10cm,求(1)兩直角邊的長(zhǎng)(2)斜邊上的高線長(zhǎng)
3、例2解析
例2:一個(gè)長(zhǎng)方形零件圖,根據(jù)所給的尺寸(單位mm),求兩孔中心A、B之間的距離.
4、知識(shí)應(yīng)用
臺(tái)風(fēng)“梅花”把小明家門前的一棵5米高的大樹從2米處折斷了,折斷的樹枝會(huì)不會(huì)打到停在大樹旁2.5米處的小轎車呢?為什么?
四、知識(shí)延伸
想一想:小明的媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你能解釋這是為什么嗎?
五、體會(huì)與分享
說說這節(jié)課你的收獲和體會(huì),讓大家與你一起分享。
本文來自:逍遙右腦記憶 http://yy-art.cn/chuer/57678.html
相關(guān)閱讀:探索勾股定理1