2012-2013學(xué)年度第一學(xué)期八年級(jí)數(shù)學(xué)導(dǎo)學(xué)案(10)
2.7勾股定理的應(yīng)用(1)
2012-9-13
班級(jí) 學(xué)號(hào) 姓名
【學(xué)習(xí)目標(biāo)】
1.能運(yùn)用勾股定理解決生活中與直角三角形有關(guān)的問題;
2.能從實(shí)際問題中建立數(shù)學(xué)模型,將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,同時(shí)滲透方程、轉(zhuǎn)化等數(shù)學(xué)思想。
3.進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值
【學(xué)習(xí)重、難點(diǎn)】
重點(diǎn):勾股定理的應(yīng)用
難點(diǎn):將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題
【新知預(yù)習(xí)】
1.如圖,單杠AC的高度為5m,若鋼索的底端B與單杠底端C的距離為12m,求鋼索AB的長.
【導(dǎo)學(xué)過程】
一、情境創(chuàng)設(shè)
欣賞生活中含有直角三角形的圖片,如果知道斜拉橋上的索塔AB的高,如何計(jì)算各條拉索的長?
二、探索活動(dòng)
活動(dòng)一 如圖,起重機(jī)吊運(yùn)物體,已知BC=6m,AC=10m,求AB的長.
活動(dòng)二 在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了一道有趣的問題,這個(gè)問題的意思是:有一個(gè)水池,水面是一個(gè)邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達(dá)岸邊的水面.請問這個(gè)水池的深度和這根蘆葦?shù)拈L度各為多少?
活動(dòng)三 一輛裝滿貨物的卡車,其外形高2.5米,寬1.6米,要開進(jìn)廠門形狀如圖所示的某工廠,問這輛卡車能否通過該工廠的廠門?
三、例題講解:
1.《中華人民共和國道路交通安全法》規(guī)定:小汽車在城市道路上行駛速度不得超過70km/h,如圖一輛小汽車在一條城市中的直道上行駛,某一時(shí)刻剛好行駛到路對面車速檢測儀的正前方30m處,過了2s后,測得小汽車與車速檢測儀間的距離為50m,這輛小汽車超速了嗎?
2.一種盛飲料的圓柱形杯(如圖),測得內(nèi)部地面半徑為2.5cm,高為12cm,吸管斜置于杯中,并在杯口外面至少露出4.6cm,問吸管需要多長?
【反饋練習(xí)】
1.(1)在Rt△ABC中,∠C=90°,若BC=4,AC=2,則AB=______;若AB=4,BC=2,則AC=_____;
(2)一個(gè)直角三角形的模具,量得其中兩邊的長分別為5cm,3cm,則第三邊的長是______;
(3)甲乙兩人同時(shí)從同一地出發(fā),甲往東走4km,乙往南走6km,這時(shí)甲乙兩人相距____km.
2.如圖,圓柱高為8cm,地面半徑為2cm ,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程( 取3)是 ( )
A.20cm B.10cm C.14cm D.無法確定
3.如圖,筆直的公路上A、B兩點(diǎn)相距25km,C、D為兩村莊,DA⊥AB于點(diǎn)A,CB⊥AB于點(diǎn)B,已知DA=15km,CB=10km,現(xiàn)在要在公路的AB段上建一個(gè)土特產(chǎn)品收購站E,使得C、D兩村到收購站E的距離相等,則收購站E應(yīng)建在離A點(diǎn)多遠(yuǎn)處?
【課后作業(yè)】P67 習(xí)題2.7 1、4題
本文來自:逍遙右腦記憶 http://yy-art.cn/chuer/58608.html
相關(guān)閱讀:一次函數(shù)導(dǎo)學(xué)案