反例與證明教案

編輯: 逍遙路 關(guān)鍵詞: 八年級(jí) 來源: 高中學(xué)習(xí)網(wǎng)
M
4.3反例與證明
一、教材、學(xué)情分析:
舉反例和證明同樣重要,注重反例以培養(yǎng)學(xué)生思維的縝密性、靈活性,以及注重反例構(gòu)建培養(yǎng)學(xué)生思維的發(fā)散性、深刻性和創(chuàng)新性在數(shù)學(xué)中的重要性已越來越被人們重視和認(rèn)可。反例構(gòu)建還是誘發(fā)學(xué)生創(chuàng)造力的很好載體。教師在進(jìn)行教學(xué)時(shí),不但要適當(dāng)?shù)厥褂梅蠢匾氖且朴谝龑?dǎo)學(xué)生構(gòu)建反例,這實(shí)際上是為學(xué)生創(chuàng)設(shè)了一種探索情境。因此,構(gòu)建反例的過程也是學(xué)生發(fā)散思維的充分發(fā)揮和訓(xùn)練過程。
二、教學(xué)目標(biāo):
(一) 知識(shí)與技能
通過實(shí)際問題的分析,理解反例的意義和作用。掌握在簡(jiǎn)單情況下利用反例證明一個(gè)命題是錯(cuò)誤的。
(二)教學(xué)思考
通過判定引入命題的真假培養(yǎng)學(xué)生的思維能力; 在思考爭(zhēng)論的過程中,學(xué)會(huì)合作,交流思想;通過獨(dú)立思考與小組合作,小組競(jìng)賽培養(yǎng)學(xué)生獨(dú)立自主精神、合作精神和競(jìng)爭(zhēng)意識(shí);
(三)解決問題
會(huì)利用一些簡(jiǎn)單的例子,對(duì)一個(gè)命題作出合理的解釋判斷與證明;提高他們處理問題和解決問題能力;
(四)情感與態(tài)度
通過數(shù)學(xué)知識(shí)的實(shí)際應(yīng)用,滲透數(shù)學(xué)來源于生活又應(yīng)用于生活的思想,體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,從而激發(fā)他們的學(xué)習(xí)興趣。
【教學(xué)重點(diǎn)、難點(diǎn)】
?重點(diǎn):用反例證 明一個(gè)命題是錯(cuò)誤的.
?難點(diǎn):如何構(gòu)造一個(gè)反例去證明一個(gè)命題是錯(cuò)誤的.因?yàn)橐獜臈l件出發(fā)又不能使其滿足結(jié)論,要求學(xué)生對(duì)數(shù)學(xué)概念的理解能力較高。
【教學(xué)過程】
一、談話引入,激發(fā)興趣
讀一讀:
高斯說:“給我最大快樂的,不是已懂得知識(shí),而是不斷地學(xué)習(xí);不是已有的東西,而是不斷地獲;不是 已達(dá)到的高度,而是繼續(xù)不斷地攀登”。
師:高斯是偉大的數(shù)學(xué)家,他告訴我們要不斷學(xué)習(xí),學(xué)無止境,讓我們繼續(xù)不斷地向上攀登吧!
(設(shè)計(jì)意圖:師生交流,聯(lián)絡(luò)感情,通過一起學(xué)習(xí)名人名言可縮小師生之間的距離,使學(xué)生體會(huì)到師生之間是平等的,另一方面通過學(xué)習(xí)名言可對(duì)學(xué)生進(jìn)行思想教育,希望他們能繼續(xù)努力,永攀高峰。)
二、師生交流,引入新課
高斯是偉大的數(shù)學(xué)家嗎?這句話是命題嗎?
(通過它來復(fù)習(xí)命題的概念,請(qǐng)學(xué)生將這句話改成一個(gè) 命題)
高斯是偉大的數(shù)學(xué)家。再問這個(gè) 命題正確嗎? (學(xué)生答)
我們?cè)賮?判斷下列命題的真假[
(1)會(huì)飛的動(dòng)物都是鳥。
(學(xué)生會(huì)說是假命題。)
師問:為何是假命題?學(xué)生舉出蝴蝶、蒼蠅、蜻蜓等會(huì)飛,但不是鳥。
(設(shè)計(jì)意圖:讓學(xué)生能 夠分辨一個(gè)命題的真假,能夠舉出適當(dāng)?shù)姆蠢J箤W(xué)生初步有通過舉反例可以說明一個(gè)命題是假命題的思想,以便在解決下面三題時(shí)能想出舉出反例。)
(2)素?cái)?shù)是奇數(shù) (學(xué)生答:假命題,舉例2)
(3)黃皮膚、黑頭發(fā)的人是中國(guó)人 (學(xué)生答:假命題,舉例韓國(guó)人,日本人等)
(4)在不同頂點(diǎn)上有兩個(gè)外角是鈍角的三角形是銳角三角形 (學(xué)生答:假命題,等腰直角三角形等)
師:我們對(duì)真命題的證明,掌握了一定的方法和技能 ,那么如何來說明一個(gè)命題是假命題呢?如上述四個(gè)命題你是如何來說明它是假命題的?(學(xué)生能夠答:舉個(gè)例子說明)
今天我們將一起來探討如何說明一個(gè)命題是假命題。從而引出課題??反例與證明
三、師生互動(dòng),學(xué)習(xí)新知
1、小組合作,共同進(jìn)步
師生總結(jié):從引例知道判斷一個(gè)命題是假命題 只要舉出一個(gè)例子即可。
學(xué)生討論:怎么樣例子才能判斷一個(gè)命題是假命題?
學(xué)生分小組討論,教師巡回指導(dǎo),每小組代表發(fā)言
師生總結(jié):具備命題條件但不具備命題結(jié)論的例子,這樣的例子稱為反例。
師:如可以舉2是素?cái)?shù),但不是奇數(shù),從而證明“素?cái)?shù)是奇數(shù)”是假命題.
韓國(guó)人,日本人也是黃皮膚、黑頭發(fā)的人從而證明“黃皮膚、黑頭發(fā)的人是中國(guó)人”是假命題。這些例子都符合命題的條件但不具備命題的結(jié)論。
(設(shè)計(jì)意圖:讓學(xué)生充分討論我們所需要的反例有什么要求,因?yàn)榕e反例有時(shí)比較困難。通過學(xué)生激烈的爭(zhēng)論可以給 學(xué)生一個(gè)舉反例的指導(dǎo)方向,學(xué)生在 爭(zhēng)論中更易接受正確的知識(shí),使學(xué)生能在判定具體命題真假時(shí)舉出適當(dāng)反例。)[
2、比一比,賽一賽(小組競(jìng)賽)
判斷下列命題是真命題還是假命題,是真命題請(qǐng)證明,是假命題請(qǐng)舉反例.
(1)三角形的外角和等于360 °
(2)三線兩兩相交,必有三個(gè)交點(diǎn)
(3)若ab<0,則a>0,b<0
(4)任何三條線段都能組成一個(gè)三角形
(5)若 x+y=0,則
(設(shè)計(jì)意圖:通過學(xué)生競(jìng)賽,激發(fā)學(xué)生學(xué)習(xí)興趣。趁熱打鐵,及時(shí)鞏固,培養(yǎng)學(xué)生的動(dòng)手能力和應(yīng)用知識(shí)解決問題的能力,讓學(xué)生能夠分辨一個(gè)命題的真假,對(duì)真命題能夠證明,對(duì)假命題能夠舉出適當(dāng)?shù)姆蠢?br />3、設(shè)置一個(gè)互動(dòng)游戲:讓一個(gè)學(xué)生出一個(gè)命題,另一學(xué)生判斷真假。
(設(shè)計(jì)意圖此處設(shè)置互動(dòng)游戲,一方面是為了更好地以另一種方式促進(jìn)學(xué)生的學(xué)習(xí)參與,另一方面也是為了調(diào)節(jié)課堂的氣氛,因?yàn)檫@段時(shí)間學(xué)生在下午的學(xué)習(xí)總是感覺疲勞 ,興趣不是很高,這樣就可以更好地促進(jìn)學(xué)生,調(diào)節(jié)氣氛。)

師:我們已經(jīng)能舉出反例說明一個(gè)命題是 假命題,如何在解題過程中將反例用數(shù)學(xué)語言規(guī)范的表述,請(qǐng)同學(xué)們嘗試解決以下兩題。
例題:判斷下列命題的真假,并給出證明(第一題較簡(jiǎn)單學(xué)生易舉出反例,第二題學(xué)生需要構(gòu)造出圖形較為困難,老師巡視時(shí)給予適當(dāng)引導(dǎo)。)
(1)若2 x + y = 0,則x = y = 0
(2)有一條邊、兩個(gè)角相等的兩個(gè)三角形全等
學(xué)生先自主解決,然后小組內(nèi)交流糾錯(cuò)。老師巡視發(fā)現(xiàn)學(xué)生的表述不規(guī)范之處,予以糾正。挑出學(xué)生解題中普遍存在問題,用投影儀集體糾錯(cuò),規(guī)范解題步驟。
(設(shè)計(jì)意圖:學(xué)生先嘗試數(shù)學(xué)問題中反例的表述,使學(xué)生感覺到學(xué)習(xí)并不是一件很容易或很困難的事情。然后通過合作學(xué)習(xí),為每位學(xué)生提供交流的空間,讓他們能積極參與,勇于發(fā)表自己的觀點(diǎn),幫助其他同學(xué)修正錯(cuò)誤,給學(xué)生以成就感。)
幻燈片給出具體解題過程
解(1)是假命題!
取x = -1 , y = 2 ,
則2 x + y = 2 ×(-1)+ 2 = 0
但x≠0且y≠0。
即x = -1,y = 2 具備2 x + y = 0 的條 件,
但不具備命題的結(jié)論,
所以此命題為假命題

(2) 假命題。
如圖:△ABC和△A’B’C’中,
∠C=∠A’=75°
∠B=∠C’=45°
AB=A’B’=2.5cm
但很明顯△ABC和△A’B’C’不全等,
所以此命題為假命題

例題小結(jié): 如果要證明或判斷一個(gè)命題是假命題,那么我們只要舉出一個(gè)符合 題設(shè)而不符合結(jié)論的例子就可以了。涉及數(shù)的問題舉出一些特殊值,一些幾何問題可以構(gòu)造出適當(dāng)幾何圖形,構(gòu)造的圖形也是解題的步驟,需要輔助幾何表述,才能成為解題過程。
四、應(yīng)用新知,體驗(yàn)成功[
(設(shè)計(jì)意圖:學(xué)生能夠分辨一個(gè)命題的真假,對(duì)真命題能夠證明,對(duì)假命題能夠舉出適當(dāng)?shù)姆蠢4鷶?shù)問題稍好解決,幾何問題構(gòu)造圖形是學(xué)習(xí)中較為難解決的問題,予以適當(dāng)強(qiáng)化。)
判斷命題“兩邊 和其中一邊的對(duì)角對(duì)應(yīng)相等的兩個(gè)三角形全等”的真假,并給出證明。(學(xué)生小組討論,構(gòu)造反例。)
老師分析引導(dǎo):這是一個(gè)假命題,要證明它是一個(gè)假命題,關(guān)鍵是看如何構(gòu)造反 例。
(老師巡視挑出解答較好的兩個(gè)反例投影展示,請(qǐng)學(xué)生介紹解題思路。老師點(diǎn)評(píng)并做補(bǔ)充。)
本題可以從以下兩方面考慮,如圖4 ? 4 ? 4(1)三角形ABC中,AB=AC,在底邊BC延長(zhǎng)線上取點(diǎn)D,連DA,這樣在△ADB和△ADC中,AD=AD,∠D=∠D,AB=AC,顯然觀察圖形可知△ADB與△ADC不全等,或者,在BC上任取一點(diǎn)E(E不是中點(diǎn)), 如圖4-4-4(2),則在△ABE和△ACE中,AB=AC,∠B=∠C,AE=AE,顯然它們不全等。

解 這是一個(gè)假命題,證明如下:
如圖4 ? 4 ? 4(1),在 △ABC中,AB=AC,延長(zhǎng)CB到D,連結(jié)AD。
則AB=AC,(已知)
AD=AD,(公共邊)
∠D=∠D,(公共角)
但△ADB與△ADC不全等。
評(píng)注 能舉反例說明一個(gè)命題是假命題,反例不在于多,只要能找到一個(gè)說明即可。
五、課堂小結(jié),形成系統(tǒng)
暢所欲言:通過這節(jié)課的學(xué)習(xí),談?wù)勀愕氖斋@與體會(huì)。
(設(shè)計(jì)意圖: 讓學(xué)生自己總結(jié)本堂課的 得失,一方面培養(yǎng)學(xué)生善于總結(jié)反思的良好習(xí)慣;另一方面可以提高學(xué)生的語言表達(dá)能力,為自己和其他同學(xué)梳理了知識(shí)體系,使其系統(tǒng)化,起到畫龍點(diǎn)睛的作用。)
老師給出本節(jié)知識(shí)點(diǎn):1、判斷一個(gè)命題是假命題只要舉出一個(gè)反例即可。[ ]
2、反例是具備命題條件但不具備命題結(jié)論的例子。
3、 涉及數(shù)的問題舉出 一些特殊值,一些幾何問題可以構(gòu)造出適當(dāng)幾何圖形,構(gòu)造的圖形也是解題的步驟,需要輔助幾何表述,才能成為解題過程。
六、布置作業(yè),深化提高
1、作業(yè)本作業(yè)。見《作業(yè)本》(分不同層次布置不同要求的作業(yè),必做題,選做題)
2、探索與思考:
判斷命題 “一角和夾這角的一邊對(duì)應(yīng)相等,且這邊上的中線對(duì)應(yīng)相等的兩個(gè)三角形全等” 是真命題,還是假命題?請(qǐng)給出證明。

(設(shè)計(jì)意圖:根據(jù)學(xué)生的不同層次布置不同的作業(yè),真正體現(xiàn)因材施教原則。)


本文來自:逍遙右腦記憶 http://yy-art.cn/chuer/70681.html

相關(guān)閱讀:蘇科版八年級(jí)下9.3反比例函數(shù)的應(yīng)用教案