八年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案

編輯: 逍遙路 關(guān)鍵詞: 八年級(jí) 來源: 高中學(xué)習(xí)網(wǎng)
M
課題11.1全等三角形課型新授課
教學(xué)目標(biāo)1.知道什么是全等形、全等三角形及全等三角形的對(duì)應(yīng)元素;
2.知道全等三角形的性質(zhì),能用符號(hào)正確地表示兩個(gè)三角形全等;
3.能熟練找出兩個(gè)全等三角形的對(duì)應(yīng)角、對(duì)應(yīng)邊.
教學(xué)重點(diǎn)全等三角形的性質(zhì).
教學(xué)難點(diǎn)找全等三角形的對(duì)應(yīng)邊、對(duì)應(yīng)角.
教學(xué)過程Ⅰ.提出問題,創(chuàng)設(shè)情境
1、問題:你能發(fā)現(xiàn)這兩個(gè)三角形有什么美妙的關(guān)系嗎?
這兩個(gè)三角形是完全重合的.
2.學(xué)生自己動(dòng)手(同桌兩名同學(xué)配合)
取一張紙,將自己事先準(zhǔn)備好的三角板按在紙上,畫下圖形,照?qǐng)D形裁下來,紙樣與三角板形狀、大小完全一樣.
3.獲取概念
讓學(xué)生用自己的語(yǔ)言敘述:全等形、全等三角形、對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角、對(duì)應(yīng)邊,以及有關(guān)的數(shù)學(xué)符號(hào).形狀與大小都完全相同的兩個(gè)圖形就是全等形.
要是把兩個(gè)圖形放在一起,能夠完全重合,就可以說明這兩個(gè)圖形的形狀、大小相同.
概括全等形的準(zhǔn)確定義:能夠完全重合的兩個(gè)圖形叫做全等形.請(qǐng)同學(xué)們類推得出全等三角形的概念,并理解對(duì)應(yīng)頂點(diǎn)、對(duì)應(yīng)角、對(duì)應(yīng)邊的含義.仔細(xì)閱讀課本中“全等”符號(hào)表示的要求.
Ⅱ.導(dǎo)入新課
將△ABC沿直線BC平移得△DEF;將△ABC沿BC翻折180°得到△DBC;將△ABC旋轉(zhuǎn)180°得△AED.
議一議:各圖中的兩個(gè)三角形全等嗎?
不難得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意強(qiáng)調(diào)書寫時(shí)對(duì)應(yīng)頂點(diǎn)字母寫在對(duì)應(yīng)的位置上)啟示:一個(gè)圖形經(jīng)過平移、翻折、旋轉(zhuǎn)后,位置變化了,但形狀、大小都沒有改變,所以平移、翻折、旋轉(zhuǎn)前后的圖形全等,這也是我們通過運(yùn)動(dòng)的方法尋求全等的一種策略.
觀察與思考:
尋找甲圖中兩三角形的對(duì)應(yīng)元素,它們的對(duì)應(yīng)邊有什么關(guān)系?對(duì)應(yīng)角呢?
(引導(dǎo)學(xué)生從全等三角形可以完全重合出發(fā)找等量關(guān)系)
得到全等三角形的性質(zhì):全等三角形的對(duì)應(yīng)邊相等. 全等三角形的對(duì)應(yīng)角相等.
[例1]如圖,△OCA≌△OBD,C和B,A和D是對(duì)應(yīng)頂點(diǎn),說出這兩個(gè)三角形中相等的邊和角.

問題:△OCA≌△OBD,說明這兩個(gè)三角形可以重合,思考通過怎樣變換可以使兩三角形重合?
將△OCA翻折可以使△OCA與△OBD重合.因?yàn)镃和B、A和D是對(duì)應(yīng)頂點(diǎn),所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
:兩個(gè)全等的三角形經(jīng)過一定的轉(zhuǎn)換可以重合.一般是平移、翻轉(zhuǎn)、旋轉(zhuǎn)的方法.
[例2]如圖,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的對(duì)應(yīng)邊和對(duì)應(yīng)角.
分析:對(duì)應(yīng)邊和對(duì)應(yīng)角只能從兩個(gè)三角形中找,所以需將△ABE和△ACD從復(fù)雜的圖形中分離出來.
根據(jù)位置元素來找:有相等元素,它們就是對(duì)應(yīng)元素,然后再依據(jù)已知的對(duì)應(yīng)元素找出其余的對(duì)應(yīng)元素.常用方法有:
(1)全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊;兩個(gè)對(duì)應(yīng)角所夾的邊也是對(duì)應(yīng)邊.
(2)全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角;兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.
解:對(duì)應(yīng)角為∠BAE和∠CAD.
對(duì)應(yīng)邊為AB與AC、AE與AD、BE與CD.
[例3]已知如圖△ABC≌△ADE,試找出對(duì)應(yīng)邊、對(duì)應(yīng)角.(由學(xué)生討論完成)
借鑒例2的方法,可以發(fā)現(xiàn)∠A=∠A,在兩個(gè)三角形中∠A的對(duì)邊分別是BC和DE,所以BC和DE是一組對(duì)應(yīng)邊.而AB與AE顯然不重合,所以AB與AD是一組對(duì)應(yīng)邊,剩下的AC與AE自然是一組對(duì)應(yīng)邊了.再根據(jù)對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角可得∠B與∠D是對(duì)應(yīng)角,∠ACB與∠AED是對(duì)應(yīng)角.所以說對(duì)應(yīng)邊為AB與AD、AC與AE、BC與DE.對(duì)應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED.
做法二:沿A與BC、DE交點(diǎn)O的連線將△ABC翻折180°后,它正好和△ADE重合.這時(shí)就可找到對(duì)應(yīng)邊為:AB與AD、AC與AE、BC與DE.對(duì)應(yīng)角為∠A與∠A、∠B與∠D、∠ACB與∠AED.
Ⅲ.課堂練習(xí)課本練習(xí)1.
Ⅳ.課時(shí)小結(jié)
通過本節(jié)課學(xué)習(xí),我們了解了全等的概念,發(fā)現(xiàn)了全等三角形的性質(zhì),并且利用性質(zhì)可以找到兩個(gè)全等三角形的對(duì)應(yīng)元素.這也是這節(jié)課大家要重點(diǎn)掌握的.
找對(duì)應(yīng)元素的常用方法有兩種:
(一)從運(yùn)動(dòng)角度看
1.翻轉(zhuǎn)法:找到中心線,沿中心線翻折后能相互重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素.
2.旋轉(zhuǎn)法:三角形繞某一點(diǎn)旋轉(zhuǎn)一定角度能與另一三角形重合,從而發(fā)現(xiàn)對(duì)應(yīng)元素.
3.平移法:沿某一方向推移使兩三角形重合來找對(duì)應(yīng)元素.
(二)根據(jù)位置元素來推理
1.全等三角形對(duì)應(yīng)角所對(duì)的邊是對(duì)應(yīng)邊;兩個(gè)對(duì)應(yīng)角所夾的邊是對(duì)應(yīng)邊.
2.全等三角形對(duì)應(yīng)邊所對(duì)的角是對(duì)應(yīng)角;兩條對(duì)應(yīng)邊所夾的角是對(duì)應(yīng)角.
Ⅴ.作業(yè)
課本習(xí)題1
課后作業(yè):《練習(xí)冊(cè)》

板書設(shè)計(jì)

課題11.2全等三角形的判定(一)課型新授課
教學(xué)目標(biāo)1.三角形全等的“邊邊邊”的條件.了解三角形的穩(wěn)定性.
2.經(jīng)歷探索三角形全等條件的過程,利用操作、歸納獲得數(shù)學(xué)結(jié)論的過程,同時(shí)培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
4.培養(yǎng)學(xué)生的團(tuán)結(jié)合作能力,創(chuàng)新求精的精神。
教學(xué)重點(diǎn)三角形全等的條件.

教學(xué)難點(diǎn)尋求三角形全等的條件.
教學(xué)過程Ⅰ.創(chuàng)設(shè)情境,引入新課
出示投影片,回憶前面研究過的全等三角形.
已知△ABC≌△A′B′C′,找出其中相等的邊與角.

圖中相等的邊是:AB=A′B、BC=B′C′、AC=A′C.
相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.
展示課作前準(zhǔn)備的三角形紙片,提出問題:你能畫一個(gè)三角形與它全等嗎?怎樣畫?
(可以先量出三角形紙片的各邊長(zhǎng)和各個(gè)角的度數(shù),再作出一個(gè)三角形使它的邊、角分別和已知的三角形紙片的對(duì)應(yīng)邊、對(duì)應(yīng)角相等.這樣作出的三角形一定與已知的三角形紙片全等).
這是利用了全等三角形的定義來作圖.那么是否一定需要六個(gè)條件呢?條件能否盡可能少呢?現(xiàn)在我們就來探究這個(gè)問題.
Ⅱ.導(dǎo)入新課
1.只給一個(gè)條件(一組對(duì)應(yīng)邊相等或一組對(duì)應(yīng)角相等),畫出的兩個(gè)三角形一定全等嗎?
2.給出兩個(gè)條件畫三角形時(shí),有幾種可能的情況,每種情況下作出的三角形一定全等嗎?分別按下列條件做一做.
①三角形一內(nèi)角為30°,一條邊為3cm.
②三角形兩內(nèi)角分別為30°和50°.
③三角形兩條邊分別為4cm、6cm.
學(xué)生分組討論、探索、歸納,最后以組為單位出示結(jié)果作補(bǔ)充交流.
結(jié)果展示:
1.只給定一條邊時(shí):

只給定一個(gè)角時(shí):

2.給出的兩個(gè)條件可能是:一邊一內(nèi)角、兩內(nèi)角、兩邊.

可以發(fā)現(xiàn)按這些條件畫出的三角形都不能保證一定全等.
給出三個(gè)條件畫三角形,你能說出有幾種可能的情況嗎?
歸納:有四種可能.即:三內(nèi)角、三條邊、兩邊一內(nèi)角、兩內(nèi)有一邊.
在剛才的探索過程中,我們已經(jīng)發(fā)現(xiàn)三內(nèi)角不能保證三角形全等.下面我們就來逐一探索其余的三種情況.
已知一個(gè)三角形的三條邊長(zhǎng)分別為6cm、8cm、10cm.你能畫出這個(gè)三角形嗎?把你畫的三角形剪下與同伴畫的三角形進(jìn)行比較,它們?nèi)葐幔?br />1.作圖方法:
先畫一線段AB,使得AB=6cm,再分別以A、B為圓心,8cm、10cm為半徑畫弧,兩弧交點(diǎn)記作C,連結(jié)線段AC、BC,就可以得到三角形ABC,使得它們的邊長(zhǎng)分別為AB=6cm,AC=8cm,BC=10cm.
2.以小組為單位,把剪下的三角形重疊在一起,發(fā)現(xiàn)都能夠重合.這說明這些三角形都是全等的.
3.特殊的三角形有這樣的規(guī)律,要是任意畫一個(gè)三角形ABC,根據(jù)前面作法,同樣可以作出一個(gè)三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.將△A′B′C′剪下,發(fā)現(xiàn)兩三角形重合.這反映了一個(gè)規(guī)律:
三邊對(duì)應(yīng)相等的兩個(gè)三角形全等,簡(jiǎn)寫為“邊邊邊”或“SSS”.
用上面的規(guī)律可以判斷兩個(gè)三角形全等.判斷兩個(gè)三角形全等的推理過程,叫做證明三角形全等.所以“SSS”是證明三角形全等的一個(gè)依據(jù).請(qǐng)看例題.

[例]如圖,△ABC是一個(gè)鋼架,AB=AC,AD是連結(jié)點(diǎn)A與BC中點(diǎn)D的支架.
求證:△ABD≌△ACD.

[分析]要證△ABD≌△ACD,可以看這兩個(gè)三角形的三條邊是否對(duì)應(yīng)相等.
證明:因?yàn)镈是BC的中點(diǎn)
所以BD=DC
在△ABD和△ACD中
所以△ABD≌△ACD(SSS).
生活實(shí)踐的有關(guān)知識(shí):用三根木條釘成三角形框架,它的大小和形狀是固定不變的,而用四根木條釘成的框架,它的形狀是可以改變的.三角形的這個(gè)性質(zhì)叫做三角形的穩(wěn)定性.所以日常生活中常利用三角形做支架.就是利用三角形的穩(wěn)定性.例如屋頂?shù)娜俗至、大橋鋼架、索道支架等?br />Ⅲ.隨堂練習(xí)
如圖,已知AC=FE、BC=DE,點(diǎn)A、D、B、F在一條直線上,AD=FB.要用“邊邊邊”證明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,還應(yīng)該有什么條件?怎樣才能得到這個(gè)條件?

本文來自:逍遙右腦記憶 http://yy-art.cn/chuer/78190.html

相關(guān)閱讀:八年級(jí)數(shù)學(xué)上冊(cè)全冊(cè)教案(北師大)