中考數(shù)學整體思想與特殊值復習教案

編輯: 逍遙路 關鍵詞: 九年級 來源: 高中學習網(wǎng)
M
2011年中考復習專題(一)整體思想與特殊值法

【任務分析】
1.【內(nèi)容分析】
重點:通過訓練,使學生能迅速判斷是否能用整體思想與特殊值法解決問題.
難點:判斷是否能用整體思想與特殊值法解決問題.
考點:在中考中,主要應用在選擇題和填空題中,能夠適時地運用整體策略,則可以使解題過程變得非常簡便.利用特殊值法解決有關填空題,特別是對一些難度較大的題,會有很好的解題效果.
2.【復習目標】
(1)掌握數(shù)學中的整體思想.
(2)會熟練使用特值法解決題目.
【環(huán)節(jié)安排】
環(huán)節(jié)教 學 問 題 設 計教學活動設計




顧1.已知 ,則 __________
2. 已知 ,則代數(shù)式 的值為 .

3.已知 , ( ).
A B C D
4. 用換元法解方程 + =7,若設 =y,則原方程可化為( )
A.y2-7y+6=0 B.y2+6y-7=0
C.6y2-7y+1=0 D.6y2+7y+1=0

出示題目,學生完成

對于1題,可以整體變形后,整體代.

對于第2題,可以運用分式的基本性質,把分式進行變形,為整體代入創(chuàng)造條件,這也是分式求值常用的技巧.
對于3題,可以“將計就計”,利用特殊值(選項給出的)進行驗證.






例1 求 的值.
分析:將 變形,得 ,再將要求值的式子變形為 ,把 代入,即可求出其值.
答案:
例2 若 ,則分式 的值等于____________
分析:既然 ,我們就“將計就計”,已知經(jīng)x=2,y=7,把它們代入求值即可,答案:
例3 (09.北京)已知 ,求 的值.

例 4 已知實數(shù)x滿足4x2-4x+l=O,則代數(shù)式2x+ 的值為________.例題1思路點撥:在已知條件等式的求值問題中,把已知條件變形轉化后,通過整體代入求值,可避免由局部運算所帶來的麻煩.
例題2思路點撥:若本題是解答題,則要是用設k法(設x=2k ,y=7k)或整體代入法(分子、分母同除以xy).
例題3思路點撥:本題若求出一元二次方程的解再代入會很麻煩,我們采用整體代入法去解,則很快獲解.
例題4思路點撥:根據(jù)式子的特點,從整體著手,是整體思想的有效運用,這樣做既簡便,又快捷.




償1.若 求 的值是( ).
A. B. C. D.
2. 如圖,在高2米,坡角為30o的樓梯表面鋪地毯,
則地毯長度至少需 米.
3.已知實數(shù)a滿足a2+2a-8=0,求 的值.
4.已知 ,求代數(shù)式 的值.
5. 如圖,在平行四邊形ABCD中,AE⊥BC于點E,AF⊥CD于點F,∠EAF= ,且 .求平行四邊形ABCD的周長.
出示題目,根據(jù)學生學習的具體情況進行選擇使用.
對于1題,:注意到分式的分子與分母中都含有 ,于是可以把它變形,然后再代入.
由 得 =7,則 = = .




通過本節(jié)課的復習,你有哪些收獲?還有哪些地方需要注意?
提醒學生:
不是所有的填空題和選擇題都適用整體思想與特殊值法,所以一定要認真審題,要根據(jù)題的特點決定能否采用整體思想與特殊值法.
讓學生結合本節(jié)課所復習的內(nèi)容,認真總結歸納.

本文來自:逍遙右腦記憶 http://www.yy-art.cn/chusan/77669.html

相關閱讀: