一、目標(biāo):
知識目標(biāo):能熟練地求解數(shù)字系數(shù)的一元一次方程( 不含去括號、去分母)。
過程方法目標(biāo):經(jīng)歷和體會解一元一次方程中“轉(zhuǎn)化”的思想方法。
情感態(tài)度目標(biāo):在數(shù)學(xué)活動中獲得成功的喜悅,增強(qiáng)自信心和意志力,激發(fā)學(xué)習(xí)興趣。
二、重難點(diǎn):
重點(diǎn):學(xué)會解一元一次方程
難點(diǎn):移項(xiàng)
三、學(xué)情分析:
知識背景:學(xué)生已學(xué)過用等式的性質(zhì)來解一元一次方程。
能力背景:能比較熟練地用等式的性質(zhì)來解一元一次方程。
預(yù)測目標(biāo):能熟練地用移項(xiàng)的方法來解一元一次方 程。
四、教學(xué)過程:
(一)創(chuàng)設(shè)情景
一頭半歲藍(lán)鯨的體 重是22t,90天后的體重是30.1t,藍(lán)鯨的體重平均每天增加多少?
(二)實(shí)踐探索,揭示新知
1.例2.解方程: 看誰算得又快:
解:方程的兩邊同時(shí)加上 得 解: 6x ? 2=10
移項(xiàng)得 6x =10+2
即 合并同類項(xiàng)得
化系數(shù)為1得
大家看一下有什么規(guī)律可尋?可以討論
2 .移項(xiàng)的概念: 根據(jù)等式的基本性質(zhì)方程中的某些項(xiàng)改變符號后,可以從方程的一邊移到另一邊 ,這樣的 變形叫做移項(xiàng)。
看誰做得又快又準(zhǔn)確!千萬不要忘記移項(xiàng)要變號。
3.解方程:3x+3 =12,
4.例3解方程: 例4解方程 :
2x=5x-21 x- 3=4-
5.觀察并思考:
①移項(xiàng)有什么特點(diǎn)?
②移項(xiàng)后的化簡包括哪些
(三)嘗試應(yīng)用 ,反饋矯正
1.下列解方程對嗎?
(1)3x+5=4 7=x-5
解: 3x+ 5 =4 解:7=x-5
移項(xiàng)得: 3x =4+5 移項(xiàng)得:-x= 5+7
合并同類項(xiàng)得 3x =9 合并同類項(xiàng)得 -x= 12
化系數(shù)為1得 x =3 化系數(shù)為1得 x = -12
2解方程
(1). 10x+1=9 (2) 2—3x =4-2x;
(四)歸納小結(jié)
1.今天學(xué)習(xí)了什么?有什么新的簡便的寫法?
2.要注意什么?
3. 解方程的 一般步驟是什么?
4.. (1) 移項(xiàng)實(shí)際上 是對方程兩邊進(jìn)行 , 使用的是
(2)系數(shù) 化為 1 實(shí)際上是對方程兩邊進(jìn)行 , 使用的是 。
(3)移項(xiàng)的作用是什么?
六、1.課堂作業(yè):課本習(xí)題4.2第二題
2.家作:評價(jià)手冊4.2第二課時(shí)
1、若方程 4x ? 3 ( a ? x ) = 5x ? 7 ( a ? x )
的解是 x = 3 ,求a的值.
2.對于關(guān)于 x 的方程
2 k x = ( k + 1 ) x + 6 ,
當(dāng)整數(shù) k為何值時(shí),方程的解為整數(shù)?
本文來自:逍遙右腦記憶 http://yy-art.cn/chuyi/68327.html
相關(guān)閱讀:實(shí)際問題與二元一次方程組