初中數(shù)學(xué)平行四邊形的常考公式定理

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

  【—平行四邊形】同學(xué)們所熟知的矩形、菱形、正方形都是特殊的平行四邊形。

  平行四邊形性質(zhì)

  (1)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩組對(duì)邊分別相等。

  (簡述為“平行四邊形的兩組對(duì)邊分別相等”[1])

  (2)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩組對(duì)角分別相等。

  (簡述為“平行四邊形的兩組對(duì)角分別相等”[1])

  ( 3)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的鄰角互補(bǔ)

  (簡述為“平行四邊形的鄰角互補(bǔ)”)

  (4)夾在兩條平行線間的平行線段相等。(平行線間的距離處處相等)

  (5)如果一個(gè)四邊形是平行四邊形,那么這個(gè)四邊形的兩條對(duì)角線互相平分。

  (簡述為“平行四邊形的對(duì)角線互相平分”[1])

  (6)連接任意四邊形各邊的中點(diǎn)所得圖形是平行四邊形。(推論)

  (7)平行四邊形的面積等于底和高的積。(可視為矩形)

  (8)過平行四邊形對(duì)角線交點(diǎn)的直線,將平行四邊形分成全等的兩部分圖形。

  (9)平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是兩對(duì)角線的交點(diǎn).

  (10)平行四邊形不是軸對(duì)稱圖形,矩形和菱形是軸對(duì)稱圖形。注:正方形,矩形以及菱形也是一種特殊的平行四邊形,三者具有平行四邊形的性質(zhì)。

  (11)平行四邊形ABCD中(如圖)E為AB的中點(diǎn),則AC和DE互相三等分,一般地,若E為AB上靠近A的n等分點(diǎn),則AC和DE互相(n+1)等分。

  (12)平行四邊形ABCD中,AC、BD是平行四邊形ABCD的對(duì)角線,則各四邊的平方和等于對(duì)角線的平方和。

  (13)平行四邊形對(duì)角線把平行四邊形面積分成四等分。

  (14)平行四邊形中,兩條在不同對(duì)邊上的高所組成的夾角,較小的角等于平行四邊形中較小的角,較大的角等于平行四邊形中較大的角。

  (15)平行四邊形中,一個(gè)角的頂點(diǎn)向他對(duì)角的兩邊所做的高,與這個(gè)角的兩邊組成的夾角相等。

  知識(shí)回顧:平行四邊形是中心對(duì)稱圖形,對(duì)稱中心是兩對(duì)角線的交點(diǎn)。


本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/101288.html

相關(guān)閱讀:淺談“高效課堂”