【—因式分解】因式分解知識(shí):把一個(gè)多項(xiàng)式化為幾個(gè)最簡(jiǎn)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解(也叫作分解因式)。
因式分解
因式分解方法靈活,技巧性強(qiáng),學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所必需的,而且對(duì)于培養(yǎng)學(xué)生的解題技能,發(fā)展學(xué)生的思維能力,都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高學(xué)生綜合分析和解決問(wèn)題的能力。
分解因式與整式乘法為相反變形。
同時(shí)也是解一元二次方程中公式法的重要步驟
注意三原則
1.分解要徹底(是否有公因式,是否可用公式)
2.最后結(jié)果只有小括號(hào)
3.最后結(jié)果中多項(xiàng)式首項(xiàng)系數(shù)為正(例如:-3x^2+x=x(-3x+1))
4.最后結(jié)果每一項(xiàng)都為最簡(jiǎn)因式
歸納方法:
1.提公因式法。
2.公式法。
3.分組分解法。
4.湊數(shù)法。[x^2+(a+b)x+ab=(x+a)(x+b)]
5.組合分解法。
6.十字相乘法。
7.雙十字相乘法。
8.配方法。
9.拆項(xiàng)補(bǔ)項(xiàng)法。
10.換元法。
11.長(zhǎng)除法。
12.求根法。
13.圖象法。
14.主元法。
15.待定系數(shù)法。
16.特殊值法。
17.因式定理法。
知識(shí)拓展:它是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,是我們解決許多數(shù)學(xué)問(wèn)題的有力工具。
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/chuzhong/106340.html
相關(guān)閱讀:初一上冊(cè)數(shù)學(xué)你該怎么學(xué)?