【—橢圓的總結(jié)】知識要點:平面內(nèi)與兩定點F1、F2的距離的和等于常數(shù)2a(2a>F1F2)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。
長軸長 A1A2 =2a; 短軸長 B1B2 =2b。
橢圓的第二定義
平面內(nèi)到定點F的距離與到定直線的距離之比為常數(shù)e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數(shù)為小于1的正數(shù)) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內(nèi)與兩定點的連線的斜率之積是常數(shù)k的動點的軌跡是橢圓,此時k應(yīng)滿足一定的條件,也就是排除斜率不存在的情況,還有K應(yīng)滿足<0且不等于-1。
簡單幾何性質(zhì)
1、范圍
2、對稱性:關(guān)于X軸對稱,Y軸對稱,關(guān)于原點中心對稱。
3、頂點:(當(dāng)中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率范圍 0
6、離心率越大橢圓就越扁,越小則越接近于圓
知識要領(lǐng)總結(jié):根據(jù)橢圓的一條重要性質(zhì),也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值。
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/178208.html
相關(guān)閱讀:名師經(jīng)驗:如何解決初二數(shù)學(xué)學(xué)習(xí)必然出現(xiàn)的問題