初中數(shù)學韋達定理基本公式大全

編輯: 逍遙路 關鍵詞: 初中數(shù)學 來源: 高中學習網(wǎng)


  【—韋達定理公式】韋達定理是表示一元二次方程的根,在更高次方程中也是可以使用的。

  韋達定理

  一元二次方程ax^2+bx+c=0 (a≠0 且△=b^2-4ac>0)中,設兩個根為x1,x2 則

  X1+X2= -b/a

  X1*X2=c/a

  用韋達定理判斷方程的根

  一元二次方程ax^2+bx+c=0 (a≠0)中,

  由二次函數(shù)推得 若b^2-4ac<0 則方程沒有實數(shù)根

  若b^2-4ac=0 則方程有兩個相等的實數(shù)根

  若b^2-4ac>0 則方程有兩個不相等的實數(shù)根

  推廣

  一般的,對一個一元n次方程∑AiX^i=0

  它的根記作X1,X2…,Xn

  我們有右圖等式組

  其中∑是求和,Π是求積。

  如果二元一次方程

  在復數(shù)集中的根是,那么

  由代數(shù)基本定理可推得:任何一元 n 次方程

  在復數(shù)集中必有根。因此,該方程的左端可以在復數(shù)范圍內分解成一次因式的乘積:

  其中是該方程的個根。兩端比較系數(shù)即得韋達定理。

  (x1-x2)的絕對值為√(b^2-4ac)/a

  韋達定理在方程論中有著廣泛的應用。


本文來自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/215891.html

相關閱讀:三角函數(shù)的正弦定理公式大全