初中數(shù)學(xué)圓的性質(zhì)知識點歸納

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


  【—圓的性質(zhì)歸納】圓是軸對稱圖形,圓也是中心對稱圖形。

  圓的性質(zhì)

 、 垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。

  逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。

 、朴嘘P(guān)圓周角和圓心角的性質(zhì)和定理

  ① 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。

  ②一條弧所對的圓周角等于它所對的圓心角的一半。

  直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  圓心角計算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)

  即圓心角的度數(shù)等于它所對的弧的度數(shù);圓周角的度數(shù)等于它所對的弧的度數(shù)的一半。

 、 如果一條弧的長是另一條弧的2倍,那么其所對的圓周角和圓心角是另一條弧的2倍。

 、怯嘘P(guān)外接圓和內(nèi)切圓的性質(zhì)和定理

 、僖粋三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;

  ②內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。

 、跼=2S△÷L(R:內(nèi)切圓半徑,S:三角形面積,L:三角形周長)

  ④兩相切圓的連心線過切點(連心線:兩個圓心相連的直線)

 、輬AO中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點。

  (4)如果兩圓相交,那么連接兩圓圓心的線段(直線也可)垂直平分公共弦。

  (5)弦切角的度數(shù)等于它所夾的弧的度數(shù)的一半。

  (6)圓內(nèi)角的度數(shù)等于這個角所對的弧的度數(shù)之和的一半。

  (7)圓外角的度數(shù)等于這個角所截兩段弧的度數(shù)之差的一半。

  (8)周長相等,圓面積比長方形、正方形、三角形的面積大。

  在即將到來的期末考試之際,老師為大家送上初中數(shù)學(xué)圓的性質(zhì)知識點歸納。


本文來自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/227241.html

相關(guān)閱讀:初三數(shù)學(xué)題目大全之圖像計算題