初中數(shù)學(xué)因式分解的基本方法知識(shí)點(diǎn)

編輯: 逍遙路 關(guān)鍵詞: 初中數(shù)學(xué) 來(lái)源: 高中學(xué)習(xí)網(wǎng)


  【—初二數(shù)學(xué)因式分解的基本方法】因式分解與解高次方程有密切的關(guān)系。對(duì)于一元一次方程和一元二次方程,初中已有相對(duì)固定和容易的方法。

  基本方法

  各項(xiàng)都含有的公共的因式叫做這個(gè)多項(xiàng)式各項(xiàng)的公因式,公因式可以是單項(xiàng)式,也可以是多項(xiàng)式。

  如果一個(gè)多項(xiàng)式的各項(xiàng)有公因式,可以把這個(gè)公因式提出來(lái),從而將多項(xiàng)式化成兩個(gè)因式乘積的形式,這種分解因式的方法叫做提取公因式。

  具體方法:當(dāng)各項(xiàng)系數(shù)都是整數(shù)時(shí),公因式的系數(shù)應(yīng)取各項(xiàng)系數(shù)的最大公約數(shù)字母取各項(xiàng)的相同的字母,而且各字母的指數(shù)取次數(shù)最低的。當(dāng)各項(xiàng)的系數(shù)有分?jǐn)?shù)時(shí),公因式系數(shù)為各分?jǐn)?shù)的最大公約數(shù)。如果多項(xiàng)式的第一項(xiàng)是負(fù)的,一般要提出“-”號(hào),使括號(hào)內(nèi)的第一項(xiàng)的系數(shù)成為正數(shù)。提出“-”號(hào)時(shí),多項(xiàng)式的各項(xiàng)都要變號(hào)。

  口訣:找準(zhǔn)公因式,一次要提盡全家都搬走,留1把家守提負(fù)要變號(hào),變形看奇偶。

  例如:-am+bm+cm=-(a-b-c)m

  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。

  注意:把2a+1/2變成2(a+1/4)不叫提公因式

  其實(shí)在數(shù)學(xué)上可以證明,對(duì)于一元三次和一元四次方程,也有固定的公式可以求解。


本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/229161.html

相關(guān)閱讀:三角函數(shù)拓展公式之九倍角公式