【—因式分解】因式分解要領(lǐng):它是中學(xué)數(shù)學(xué)中最重要的恒等變形之一,它被廣泛地應(yīng)用于初等數(shù)學(xué)之中,是我們解決許多數(shù)學(xué)問題的有力工具。
因式分解
因式分解方法靈活,技巧性強(qiáng),學(xué)習(xí)這些方法與技巧,不僅是掌握因式分解內(nèi)容所必需的,而且對(duì)于培養(yǎng)學(xué)生的解題技能,發(fā)展學(xué)生的思維能力,都有著十分獨(dú)特的作用。學(xué)習(xí)它,既可以復(fù)習(xí)整式的四則運(yùn)算,又為學(xué)習(xí)分式打好基礎(chǔ);學(xué)好它,既可以培養(yǎng)學(xué)生的觀察、思維發(fā)展性、運(yùn)算能力,又可以提高學(xué)生綜合分析和解決問題的能力。
分解因式與整式乘法為相反變形。
同時(shí)也是解一元二次方程中公式法的重要步驟
1、因式分解與解高次方程有密切的關(guān)系。對(duì)于一元一次方程和一元二次方程,初中已有相對(duì)固定和容易的方法。在數(shù)學(xué)上可以證明,對(duì)于一元三次和一元四次方程,也有固定的公式可以求解。只是因?yàn)楣竭^于復(fù)雜,在非專業(yè)領(lǐng)域沒有介紹。對(duì)于分解因式,三次多項(xiàng)式和四次多項(xiàng)式也有固定的分解方法,只是比較復(fù)雜。對(duì)于五次以上的一般多項(xiàng)式,已經(jīng)證明不能找到固定的因式分解法,五次以上的一元方程也沒有固定解法。
2 、所有的三次和三次以上多項(xiàng)式都可以因式分解。這看起來或許有點(diǎn)不可思議。比如X^4+1,這是一個(gè)一元四次多項(xiàng)式,看起來似乎不能因式分解。但是它的次數(shù)高于3,所以一定可以因式分解。如果有興趣,你也可以用待定系數(shù)法將其分解,只是分解出來的式子并不整潔。
3 、因式分解雖然沒有固定方法,但是求兩個(gè)多項(xiàng)式的公因式卻有固定方法。因式分解很多時(shí)候就是用來提公因式的。尋找公因式可以用輾轉(zhuǎn)相除法來求得。標(biāo)準(zhǔn)的輾轉(zhuǎn)相除技能對(duì)于中學(xué)生來說難度頗高,但是中學(xué)有時(shí)候要處理的多項(xiàng)式次數(shù)并不太高,所以反復(fù)利用多項(xiàng)式的除法也可以比較笨,但是有效地解決找公因式的問題。
方法 因式分解沒有普遍適用的方法,初中數(shù)學(xué)教材中主要介紹了提公因式法、公式法。而在競(jìng)賽上,又有拆項(xiàng)和添減項(xiàng)法,分組分解法和十字相乘法,待定系數(shù)法,雙十字相乘法,對(duì)稱多項(xiàng)式,輪換對(duì)稱多項(xiàng)式法,余式定理法,求根公式法,換元法,長(zhǎng)除法,短除法,除法等。
知識(shí)總結(jié):把一個(gè)多項(xiàng)式化為幾個(gè)最簡(jiǎn)整式的乘積的形式,這種變形叫做把這個(gè)多項(xiàng)式因式分解(也叫作分解因式)。
本文來自:逍遙右腦記憶 http://www.yy-art.cn/chuzhong/243389.html
相關(guān)閱讀:初中數(shù)學(xué)知識(shí)點(diǎn)之矩形性質(zhì)定理