關于初中數(shù)學思想方法的思考

編輯: 逍遙路 關鍵詞: 初中數(shù)學 來源: 高中學習網(wǎng)

  一、數(shù)學思想方法教學是新課標的重要要求

  數(shù)學思想方法是從數(shù)學內容中提煉出來的數(shù)學學科的精髓,是將數(shù)學知識轉化為數(shù)學能力的橋梁。初中數(shù)學思想方法教育,是培養(yǎng)和提高學生素質的重要內容。新的《課程標準》突出強調:“在教學中,應當引導學生在學好概念的基礎上掌握數(shù)學的規(guī)律(包括法則、性質、公式、公理、定理、數(shù)學思想和方法)。”因此,開展數(shù)學思想方法教學應作為新課改中所必須把握的教學要求。

  中學數(shù)學知識結構涵蓋了辯證思想的理念,反映出數(shù)學基本概念和各知識點所代表的實體同抽象的數(shù)學思想方法之間的相互關系。數(shù)學實體內部各單元之間相互滲透和維系的關系,升華為具有普遍意義的一般規(guī)律,便形成相對的數(shù)學思想方法,即對數(shù)學知識整體性的理解。數(shù)學思想方法確立后,便超越了具體的數(shù)學概念和內容,只以抽象的形式而存在,控制及調整具體結論的建立、聯(lián)系和組織,并以其為指引將數(shù)學知識靈活地運用到一切適合的范疇中去解決問題。數(shù)學思想方法不僅會對數(shù)學思維活動、數(shù)學審美活動起著指導作角,而且會對個體的世界觀、方法論產生深刻影響,形成數(shù)學學習效果的廣泛遷移,甚至包括從數(shù)學領域向非數(shù)學領域的遷移,實現(xiàn)思維能力和思想素質的飛躍。

  可見,良好的數(shù)學知識結構不完全取決于教材內容和知識點的數(shù)量,更應注重數(shù)學知識的聯(lián)系、結合和組織方式,把握結構的層次和程序展開后所表現(xiàn)的內在規(guī)律。數(shù)學思想方法能夠優(yōu)化這種組織方式,使各部分數(shù)學知識融合成有機的整體,發(fā)揮其重要的指導作用。因此,新課標明確提出開展數(shù)學思想方法的教學要求,旨在引導學生去把握數(shù)學知識結構的核心和靈魂,其重要意義顯而易見。

  二、對初中數(shù)學思想方法教學的幾點思考

  1、結合初中數(shù)學課程標準,就初中數(shù)學教材進行數(shù)學思想方法的教學研究。

  首先,要通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統(tǒng)攬教材全局,高屋建瓴。然后,建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規(guī)律。例如,在“因式分解”這一章中,我們接觸到許多數(shù)學方法—提公因式法、運用公式法、分組分解法、十字相乘法等。這是學習這一章知識的重點,只要我們學會了這些方法,按知識──方法──思想的順序提煉數(shù)學思想方法,就能運用它們去解決成千上萬分解多項式因式的問題。又如:結合初中代數(shù)的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數(shù)形結合等方法性思想,進一步確定數(shù)學知識與其思想方法之間的結合點,建立一整套豐富的教學范例或模型,最終形成一個活動的知識與思想互聯(lián)網(wǎng)絡。

  2、以數(shù)學知識為載體,將數(shù)學思想方法有機地滲透入教學計劃和教案內容之中。

  教學計劃的制訂應體現(xiàn)數(shù)學思想方法教學的綜合考慮,要明確每一階段的載體內容、教學目標、展開步驟、教學程序和操作要點。數(shù)學教案則要就每一節(jié)課的概念、命題、公式、法則以至單元結構等教學過程進行滲透思想方法的具體設計。要求通過目標設計、創(chuàng)設情境、程序演化、歸納總結等關鍵環(huán)節(jié),在知識的發(fā)生和運用過程中貫徹數(shù)學思想方法,形成數(shù)學知識、方法和思想的一體化。

  應充分利用數(shù)學的現(xiàn)實原型作為反映數(shù)學思想方法的基礎。數(shù)學思想方法是對數(shù)學問題解決或構建所做的整體性考慮,它來源于現(xiàn)實原型又高于現(xiàn)實原型,往往借助現(xiàn)實原型使數(shù)學思想方法得以生動地表現(xiàn),有利于對其深人理解和把握。例如:分類討論的思想方法始終貫穿于整個數(shù)學教學中。在教學中要引導學生對所討論的對象進行合理分類(分類時要做到不重復、不遺漏、標準統(tǒng)一、分層不越級),然后逐類討論(即對各類問題詳細討論、逐步解決),最后歸納總結。教師要幫助學生掌握好分類的方法原則,形成分類思想。

  數(shù)學思想方法的滲透應根據(jù)教學計劃有步驟地進行。一般在知識的概念形成階段導入概念型數(shù)學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等等。在知識的結論、公式、法則等規(guī)律的推導階段,要強調和注重思維方法,如解方程的如何消元降次、函數(shù)的數(shù)與形的轉化、判定兩個三角形相似有哪些常用思路等。在知識的總結階段或新舊知識結合部分,要選配結構型的數(shù)學思想,如函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉化,分數(shù)討論思想體現(xiàn)了局部與整體的相互轉化。在所有數(shù)學建構及問題的處理方面,注意體現(xiàn)其根本思想,如運用同解原理解一元一次方程,應注意為簡便而采取的移項法則。

  3、重視課堂教學實踐,在知識的引進、消化和應用過程中促使學生領悟和提煉數(shù)學思想方法。

  數(shù)學知識發(fā)生的過程也是其思想方法產生的過程。在此過程中,要向學生提供豐富的、典型的以及正確的直觀背景材料,創(chuàng)設使認知主體與客體之間激發(fā)作用的環(huán)境和條件,通過對知識發(fā)生過程的展示,使學生的思維和經(jīng)驗全部投人到接受問題、分析問題和感悟思想方法的挑戰(zhàn)之中,從而主動構建科學的認知結構,將數(shù)學思想方法與數(shù)學知識融匯成一體,最終形成獨立探索分析、解決問題的能力。

首頁上一頁12下一頁末頁共2頁
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/312718.html

相關閱讀:如何突破初三數(shù)學期末壓軸題