二元一次不等式(組)與平面區(qū)域?qū)W案

編輯: 逍遙路 關(guān)鍵詞: 高二 來源: 高中學(xué)習(xí)網(wǎng)


3.3.1二元一次不等式(組)與平面區(qū)域(第1時(shí))

使用說明:
1.前認(rèn)真預(yù)習(xí)本,完成本學(xué)案;
2.上認(rèn)真和同學(xué)討論交流,積極回答問題、板演,認(rèn)真聽老師點(diǎn)評(píng);
3.下復(fù)習(xí)整理。
★學(xué)習(xí)目標(biāo)
1.了解二元一次不等式的幾何意義,會(huì)根據(jù)二元一次不等式去畫它所表示的平面區(qū)域。能用平面區(qū)域表示二元一次不等式組,能把若干直線圍成的平面區(qū)域用二元一次不等式組表示。
2.能進(jìn)行各種數(shù)學(xué)語(yǔ)言之間的轉(zhuǎn)換,體驗(yàn)數(shù)形結(jié)合思想的應(yīng)用。
◆前預(yù)習(xí)、自主探究
1.二元一次不等式(組)的概念
(1)含有_________未知數(shù),并且未知數(shù)的次數(shù)是________的不等式叫做二元一次不等式。由幾個(gè)二元一次不等式組成的不等式組叫做二元一次不等式組。
(2)滿足______________________________________構(gòu)成有序數(shù)對(duì) ,所有這樣的有序數(shù)對(duì) 構(gòu)成的集合稱為二元一次不等式(組)的解集。
2.二元一次不等式表示平面區(qū)域
在平面直角坐標(biāo)系中,二元一次不等式 表示直線___________________某一側(cè)所有點(diǎn)組成的平面區(qū)域,把直線畫成_______以表示區(qū)域不包括邊界。
不等式 表示的平面區(qū)域包括邊界,把邊界畫成__________.
3.二元一次不等式表示平面區(qū)域的確定
(1)直線 同一側(cè)的所有點(diǎn)把它的坐標(biāo) 代入 ,所得的符號(hào)都__________.
(2)在直線 的一側(cè)取某個(gè)特殊點(diǎn) 作為測(cè)試點(diǎn)(當(dāng) 時(shí),常取 ;當(dāng) ,常取 或 ),由_____________的符號(hào)可以斷定 表示的是直線 哪一側(cè)的平面區(qū)域。
例 在平面直角坐標(biāo)系中畫出下列不等式(組)表示的平面區(qū)域:
(1) (2) (3)

◆堂檢測(cè)
1.不等式 表示的平面區(qū)域在直線 的(  )
A.右上方B.右下方C.左上方D.左下方
2.不在 表示的平面區(qū)域內(nèi)的點(diǎn)是( 。
A. B. C. D.
3.已知點(diǎn) 和點(diǎn) 在直線 的異側(cè),則( )
A. B. C. D.
4..已知點(diǎn) 和 在直線 的兩側(cè),則 的取值范圍是( 。
A. 或 B. 或
C. D.
5.點(diǎn) 在直線 的上方,則 得取值范圍_____________.
6.不等式3x+2y+k≤8表示的平面區(qū)域必包含(0,0)及(1,1)兩點(diǎn),則k的取值范圍是。
7. 點(diǎn) 和 在直線 的兩側(cè),則 得取值范圍___________
8. 若點(diǎn)p(A,4)到直線x-2y+2=0的距離為2 ,且點(diǎn)p在3x-y-3>0表示的區(qū)域內(nèi),則A=。
9.由直線 、 和 圍成的三角形區(qū)域(包括邊界)用不等式表示為_____________
10若不等式 表示 的下方區(qū)域,實(shí)數(shù) 的取值范圍_______________.
11.在△ABC中 ,寫出△ABC區(qū)域所表示的二元一次不等式組。




本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/45618.html

相關(guān)閱讀:一元二次不等式的應(yīng)用