命題人:熊志強(qiáng) 審題人:楊應(yīng)曙一、選擇題(本大題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的).已知等差數(shù)列{an},,則等于( )A. B.C.4 D..ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=,b=,B=120°,則 等于( )A B.C. D.3.已知數(shù)列為等比數(shù)列,若是方程的兩個(gè)根,則的值是( )A.9 B. C. D.34.在△ABC中,若A=60°,a=,則等于( )A.2 B. C. D. .的不等式(a-2+2(a--恒成立,-] B.(--) C.(-] D.(-.設(shè)Sn是等差數(shù)列{an}的前n項(xiàng)和,若=,則= B. C. D.7.在ABC中,角A,B,C的對(duì)邊分別為a,b,c,若(a2+c2-b2)tan B=ac,則角B的值為( )A B. C.或 D.或.若數(shù)列{an}的通項(xiàng)公式是an=(-1)n?(3n-2),則a1+a2+…+a10= ( )A.15 B.12C.-12 D.-15.過(guò)定點(diǎn)P,若點(diǎn)P在直線(xiàn)上,則的最小值為( )A.7 B.5 C.3 D.10.已知函數(shù)若數(shù)列{an}滿(mǎn)足an=f(n)(nN*),且{an}是遞減數(shù)列,則實(shí)數(shù)a的取值范圍是( )A B. C. D. 二、填空題(本大題共5小題,每小題5分,共25分.請(qǐng)把正確答案填在題中橫線(xiàn)上)的解集為 12.?dāng)?shù)列{an}是遞減的等差數(shù)列,且a3+a9=,a5?a7=16,則數(shù)列{an}的前n項(xiàng)和Sn的最大值為_(kāi)_______在△ABC中角A、B、C所對(duì)的邊分別為b、c 若? c)cosA=a?cosC,則cosA=14.已知數(shù)列滿(mǎn)足的通項(xiàng)15.電子計(jì)算機(jī)中使用二進(jìn)制,它與十進(jìn)制的換算關(guān)系如下表:十進(jìn)制123456……二進(jìn)制11011100101110……觀察二進(jìn)制1位數(shù),2位數(shù),3位數(shù)時(shí),對(duì)應(yīng)的十進(jìn)制的數(shù);當(dāng)二進(jìn)制為6位數(shù)能表示十進(jìn)制中最大的數(shù)是 三、解答題(本大題共6小題,共7分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)的解集是,求不等式的解集.17. (本小題12分)在銳角三角形中,邊a、b是方程2-2+2=0的兩根,角A、B滿(mǎn)足:2sin(A+B)-=0,求邊c的長(zhǎng)度及△ABC的面積.18. (本小題12分)已知數(shù)列中,滿(mǎn)足, 設(shè)(1)證明數(shù)列是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式.19. (本小題12分)已知三個(gè)不等式①; ②; ③,要使同時(shí)滿(mǎn)足不等式①、②的所有的的值也滿(mǎn)足不等式③,求的取值范圍.20. (本小題13分)已知的三邊和面積S滿(mǎn)足,且.(1)求;(2)求S的最大值.21.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2-an(n≥1).(1)求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列{2nan}的前n項(xiàng)和為T(mén)n,An=+++…+.試比較An與的大。高二(文)數(shù)學(xué)答案三、解答題(本大題共6小題,共75分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟)解:由2sin(A+B)-=0,得sin(A+B)=, ∵△ABC為銳角三角形 ∴A+B=120°, C=60°, 又∵a、b是方程2-2+2=0的兩根,∴a+b=2, a?b=2, ∴c2=a2+b2-2a?bcosC=(a+b)2-3ab=12-6=6, ∴c=, =×2×= .18.(本小題12分)18.已知數(shù)列中,滿(mǎn)足, 設(shè)(1)證明數(shù)列是等差數(shù)列;w(2)求數(shù)列的通項(xiàng)公式.解:由題知,又= =1故是等差數(shù)列(2) 20.(本小題13分)已知的三邊和面積S滿(mǎn)足,且. (1)求;(2)求S的最大值.(2)即S的最大值為21.(本小題14分)已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2-an(n≥1).(1)求證:數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列{2nan}的前n項(xiàng)和為T(mén)n,An=+++…+.試比較An與的大。馕觯骸(1)由a1=S1=2-3a1得a1=,當(dāng)n≥2時(shí),由Sn=2-an得Sn-1=2-an-1,于是an=Sn-Sn-1=an-1-an,整理得=×(n≥2),所以數(shù)列是首項(xiàng)及公比均為的等比數(shù)列. (2)由(1)得=×n-1=.于是2nan=n,Tn=1+2+3+…+n=,==2.An=2=2=.又=,問(wèn)題轉(zhuǎn)化為比較與的大小,即與的大。O(shè)f(n)=,g(n)=.f(n+1)-f(n)=,當(dāng)n≥3時(shí),f(n+1)-f(n)>0.當(dāng)n≥3時(shí),f(n)單調(diào)遞增,當(dāng)n≥4時(shí),f(n)≥f(4)=1,而g(n)<1,當(dāng)n≥4時(shí),f(n)>g(n),經(jīng)檢驗(yàn)n=1,2,3時(shí),仍有f(n)>g(n),因此,對(duì)任意正整數(shù)n,都有f(n)>g(n), 即An<.江西省宜春中學(xué)2015-2016學(xué)年高二上學(xué)期期中考試 數(shù)學(xué)(文)試題
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaoer/537729.html
相關(guān)閱讀:2019高二數(shù)學(xué)期中考試試卷[1]