拋物線及其標準方程

編輯: 逍遙路 關(guān)鍵詞: 高二 來源: 高中學習網(wǎng)

2.3.1 拋物線及其標準方程
一、目標
1.掌握拋物線的定義、幾何圖形,會推導拋物線的標準方程
2.能夠利用給定條件求拋物線的標準方程
3.通過“觀察”、“思考”、“探究”與“合作交流”等一系列數(shù)學活動,培養(yǎng)學生觀察、類比、分析、概括的能力以及邏輯思維的能力,使學生學會數(shù)學思考與推理,學會反思與感悟,形成良好的數(shù)學觀。并進一步感受坐標法及數(shù)形結(jié)合的思想
二、重點
拋物線的定義及標準方程
三、教學難點
拋物線定義的形成過程及拋物線標準方程的推導(關(guān)鍵是坐標系方案的選擇)
四、教學過程
(一)復習舊知
在初中,我們學習過了二次函數(shù) ,知道二次函數(shù)的圖象是一條拋物線
例如:(1) ,(2) 的圖象(展示兩個函數(shù)圖象):

(二)講授新課
1.課題引入
在實際生活中,我們也有許多的拋物線模型,例如1965年竣工的密西西比河河畔的薩爾南拱門,它就是用不銹鋼鑄成的拋物線形的建筑物。到底什么樣的曲線才可以稱做是拋物線?它具有怎樣的幾何特征?它的方程是什么呢?
這就是我們今天要研究的內(nèi)容.(板書:課題§2.4.1 拋物線及其標準方程)
2.拋物線的定義
信息技術(shù)應(yīng)用(課堂中展示畫圖過程)
先看一個實驗:
如圖:點F是定點, 是不經(jīng)過點F的定直線,H是 上任意一點,過點H作 ,線段FH的垂直平分線 交MH于點M。拖動點H,觀察點M的軌跡,你能發(fā)現(xiàn)點M滿足的幾何條件嗎?(學生觀察畫圖過程,并討論)
可以發(fā)現(xiàn),點M隨著H運動的過程中,始終有MH=MF,即點M與定點F和定直線 的距離相等。(也可以用幾何畫板度量MH,MF的值)
(定義引入):
我們把平面內(nèi)與一個定點F和一條定直線 ( 不經(jīng)過點F)距離相等的點的軌跡叫做拋物線,點F叫做拋物線的焦點,直線 叫做拋物線的準線.(板書)
思考?若F在 上呢?(學生思考、討論、畫圖)
此時退化為過F點且與直線 垂直的一條直線.
3.拋物線的標準方程
從拋物線的定義中我們知道,拋物線上的點 滿足到焦點F的距離與到準線 的距離相等。那么動點 的軌跡方程是什么,即拋物線的方程是什么呢?
要求拋物線的方程,必須先建立直角坐標系.
問題 設(shè)焦點F到準線 的距離為 ,你認為應(yīng)該如何選擇坐標系求拋物線的方程?按照你建立直角坐標系的方案,求拋物線的方程.
(引導學生分組討論,回答,并不斷補充常見的幾種建系方法,叫學生應(yīng)用投影儀展示計算結(jié)果)
123



注意:1.標準方程必須出來,此表格在黑板上板書。
2.若出現(xiàn)比較復雜建系方案,可以以引入的字母參數(shù)較多為由,先排除計算
3.強調(diào)P的意義。
4.教師說明曲線方程與方程的曲線:從上述過程可以看到,拋物線上任意一點的坐標都滿足方程,以方程的解 為坐標的點到拋物線的焦點的距離與到準線的距離相等,即方程的解為坐標的點都在拋物線上。所以這些方程都是拋物線的方程.
(選擇標準方程)
師:觀察4(3)個建系方案及其對應(yīng)的方程,你認為哪種建系方案使方程更簡單?
(學生選擇,說明1.對稱軸 2.焦點 3.方程無常數(shù)項,頂點在原點)
推導過程:取過焦點F且垂直于準線l的直線為x軸,x軸與l交于K,以線段KF的垂直平分線為y軸建立直角坐標系,如右圖所示,則有F( ,0),l的方程為x=— .
設(shè)動點M(x,y),由拋物線定義得:
化簡得y2=2px(p>0)
師:我們把方程 叫做拋物線的標準方程,它表示的拋物線的焦點坐標是 ,準線方程是 。
師:在建立橢圓、雙曲線的標準方程的過程中,選擇不同的坐標系得到了不同形式的標準方程,對于拋物線,當我們選擇如圖三種建立坐標系的方法,我們也可以得到不同形式的拋物線的標準方程:
(學生分前兩排,中間兩排,后面兩排三組分別計算三種情況,一起填充表格)
圖形標準方程焦點坐標準線方程

y2=2px(p>0)
( ,0)

x=—
y2=—2px(p>0)
(— ,0)

x=
x2=2py(p>0)
(0, )

y=—
x2=—2py(p>0)
(0,— )

y=

(三)例題講解
例1(1)已知拋物線的標準方程是 ,求它的焦點坐標和準線方程,
(2)已知拋物線的焦點是 ,求它的標準方程.
解:(1)∵拋物線方程為y2=6x
∴p=3,則焦點坐標是( ,0),準線方程是x=— .
(2)∵焦點在y軸的負半軸上,且 =2,∴p=4
則所求拋物線的標準方程是:x2=—8y.
變式訓練1:
(1)已知拋物線的準線方程是x=— ,求它的標準方程.
(2)已知拋物線的標準方程是2y2+5x=0,求它的焦點坐標和準線方程.
解(1)∵焦點是F(0,3),∴拋物線開口向上,且 =3,則p=6
∴所求拋物線方程是x2=12y
(2)∵拋物線方程是2y2+5x=0,即y2=— x,∴p= [高考學習網(wǎng)XK]
則焦點坐標是F(— ,0),準線方程是x=
例2 點M與點F(4,0)的距離比它到直線l:x+5=0的距離小1,求點M的軌跡方程.
解:如右圖所示,設(shè)點M的坐標為(x,y)
由已知條件可知,點M與點F的距離等于它到直線x+4=0的距離.根據(jù)拋物線的定義,點M的軌跡是以F(4,0)為焦點的拋物線.
∵ =4,∴p=8
因為焦點在x軸的正半軸上,所以點M的軌跡方程為y2=16x.
變式訓練2:
在拋物線y2=2x上求一點P,使P到焦點F與到點A(3,2)的距離之和最小.
解:如下圖所示,設(shè)拋物線的點P到準線的距離為PQ
由拋物線定義可知:PF=PQ
∴PF+PA=PQ+PA
顯然當P、Q、A三點共線時,PQ+PA最小.
∵A(3,2),可設(shè)P(x0,2)代入y2=2x得x0=2
故點P的坐標為(2,2).
(四)小結(jié)
1、拋物線的定義;
2、拋物線的四種標準方程;
3、注意拋物線的標準方程中的字母P的幾何意義.
(五)課后練習


本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaoer/54982.html

相關(guān)閱讀:命題及其關(guān)系