1.將1枚硬幣拋2次,恰好出現(xiàn)1次正面的概率是
2.任意說出星期一到星期日中的兩天(不重復(fù)),其中恰有一天是星期六的概率是
3.某銀行儲蓄卡上的密碼是一種4位數(shù)字號碼,每位上的數(shù)字可在0,1,2,…,9這10個數(shù)字中選取,某人未記住密碼的最后一位數(shù)字,若按下密碼的最后一位數(shù)字,則正好按對密碼的概率是
4.連續(xù)3次拋擲一枚硬幣,則正、反面交替出現(xiàn) 的概率是
5.在坐標(biāo)平面內(nèi),點 在x軸上方的概 率是
典型例題
例1 擲一顆骰子,觀察擲出的點數(shù),求擲得奇數(shù)點的概率。
分析:擲骰子有6個基本事件,具有有限性和等可能性, 因此是古典概型。
解:這個試驗的基本事件共有6個,即(出現(xiàn)1點)、(出現(xiàn)2點)……、(出現(xiàn)6點)
所以基本事件數(shù)n=6,
事件A=(擲得奇數(shù)點)=(出現(xiàn)1點,出現(xiàn)3點,出現(xiàn)5點),
其包含的基本事件數(shù)m=3
所以,P(A)= = = =0.5
小結(jié):利用古典概型的計算公式時應(yīng)注意兩點:
(1)所有的基本事件必須是互斥的;
(2)m為事件A所包含的基本事件數(shù),求m值時,要做到不重不漏。
例2 從含有兩件正品a1,a2和一件次品b1的三件產(chǎn)品中,每次任取一件,每次取出后不放回,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件次品的概率。
解:每次取出一個,取后不放回地連續(xù)取兩次,其一切可能的結(jié)果組成的基本事件有6個,即(a1,a2)和,(a1,b2),(a2,a1),(a2,b1),(b1,a1),(b2,a2)。其中小括號內(nèi)左邊的字母表示第1次取出的產(chǎn)品,右邊的字母表示第2次取出的產(chǎn)用A表示“取出的兩種中,恰好有一件次品”這一事件,則
A=[(a1,b1),(a2,b1),(b1,a1),(b1,a2)]
事件A由4個基本事件組成,因而,P(A)= =
例3 現(xiàn)有一批產(chǎn)品共有10件,其中8件為正品,2件為次品:
(1)如果從中取出一件,然后放回,再取一件,求連續(xù)3次取出的都是正品的概率;
(2)如果從中一次取3件,求3件都是正品的概率.
分析:(1)為返 回抽樣;(2)為不返回抽樣.
解:(1)有放回地抽取3次,按抽取順序(x,y,z)記錄結(jié)果,則x,y,z都有10種可能,所以試驗結(jié)果有10×10×10=103種;設(shè)事件A為“連續(xù)3次都取正品”,則包含的基本事件共有8×8×8=83種,因此,P(A)= =0.512.
(2)解法1:可以看作不放回抽樣3次,順序不同,基本事件不同,按抽取順序記錄(x,y,z),則x有10種可能,y有9種可能,z有8種可能,所以試驗的所有結(jié)果為10×9×8=720種.設(shè)事件B為“3件都是正品”,則事件B包含的基本事件總數(shù)為8×7×6=336, 所以P(B)= ≈0.467.
解法2:可以看作不 放回3次無順序抽樣,先按抽取順序(x,y,z)記錄結(jié)果,則x有10種可能,y有9種可能,z有8種可能,但(x,y,z),(x,z,y),(y,x,z),(y,z,x),(z,x,y),(z,y,x),是相同的,所以試驗的所有結(jié)果有10×9×8÷6=120,按同樣的方法,事件B包含的基本事件個數(shù)為8×7×6÷6=56,因此P(B)= ≈0.467.
小結(jié):關(guān)于不放回抽樣,計算基本事件個數(shù)時,既可以看作是有順序的,也可以看作是無順序的,其結(jié) 果是一樣的,但不論選擇哪一種方式,觀察的角度必須一致,否則會導(dǎo)致錯誤.
課堂精煉
1.從一副撲克牌(54張)中抽一張牌,抽到牌“K”的概率是 。
答案:
2.將一枚硬幣拋兩次,恰好出現(xiàn)一次正面的概率是 。
答案:
3.從標(biāo)有1,2,3,4,5,6,7, 8,9的9張紙片中任取2張,那么這2 張紙片數(shù)字之積為偶數(shù)的概率為 。
答案: 4.同時擲兩枚骰子,所得點數(shù)之和為5的概率為 ;
點數(shù)之和大于9的概率為 。
答案: ;
5.一個口袋里裝有2個白球和2個黑球,這4 個球除顏色外完全相同,從中摸出2個球,則1個是白球,1個是黑球的概率是 。
答案:
6.先后拋3枚均勻的硬幣,至少出現(xiàn)一次正面的概率為 。
答案:
7.一個正方體,它的表面涂滿了紅色,在它的每個面上切兩刀,可得27個小正方體,從中任取一個它恰有一個面涂有紅色的概率是 。
答案:
8.從1,2,3,4,5這5個數(shù)中任取兩個,則這兩個數(shù)正好相差1的概率是________。
答案:
9.口袋里裝有兩個白球和兩個黑球,這四個球除顏色外完全相同,四個人按順序依次從中摸出一球,試求“第二個人摸到白球”的概率。
答案:把四人依次編號為甲、乙、丙、丁,把兩白球編上序號1、2,把兩黑球也 編上序號1、2,于是四個人按順序依 次從袋內(nèi)摸出一個球的所有可能結(jié)果,可用樹形圖直觀地表示出來如 下:
從上面的樹形圖可以看出,試驗的所有可能結(jié)果數(shù)為24,第二人摸到白球的結(jié)果有12種,記“第二個人摸到白球”為事件A,則 。
10.袋中有紅、白色球各一個,每次任取一個,有放回地抽三次,寫出所有的基本事件,并計算下列事件的概率:(1)三次顏色恰有兩次同色; (2)三次顏色全相同;
(3)三次抽取 的球中紅色球出現(xiàn)的次數(shù)多于白色球出現(xiàn)的次數(shù)。
答案:(紅紅紅)(紅紅白)(紅白紅)(白紅紅)(紅白白)(白紅白)(白白紅)(白白白)
(1) (2) (3)
11.已知集合 , ;
(1)求 為一次函數(shù)的概率; (2)求 為二次函數(shù)的概率。
答案:(1) (2)
12.連續(xù)擲兩次骰子,以先后得到的點數(shù) 為點 的坐標(biāo),設(shè)圓 的方程為 ;
(1)求點 在圓 上的概率; (2)求 點 在圓 外的概率。
答案:(1) (2)
本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/55752.html
相關(guān)閱讀:幾何概型