不等式的解法:
(1)一元二次不等式:一元二次不等式二次項(xiàng)系數(shù)小于零的,同解變形為二次項(xiàng)系數(shù)大于零;注:要對進(jìn)行討論:
(2)絕對值不等式:若,則;;
注意:
(1)解有關(guān)絕對值的問題,考慮去絕對值,去絕對值的方法有:
⑴對絕對值內(nèi)的部分按大于、等于、小于零進(jìn)行討論去絕對值;
(2)通過兩邊平方去絕對值;需要注意的是不等號兩邊為非負(fù)值。
(3)含有多個(gè)絕對值符號的不等式可用“按零點(diǎn)分區(qū)間討論”的方法來解。
(4)分式不等式的解法:通解變形為整式不等式;
(5)不等式組的解法:分別求出不等式組中,每個(gè)不等式的解集,然后求其交集,即是這個(gè)不等式組的解集,在求交集中,通常把每個(gè)不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。
(6)解含有參數(shù)的不等式:
解含參數(shù)的不等式時(shí),首先應(yīng)注意考察是否需要進(jìn)行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個(gè)含參數(shù)的式子時(shí),則需討論這個(gè)式子的正、負(fù)、零性.
②在求解過程中,需要使用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性時(shí),則需對它們的底數(shù)進(jìn)行討論.
③在解含有字母的一元二次不等式時(shí),需要考慮相應(yīng)的二次函數(shù)的開口方向,對應(yīng)的一元二次方程根的狀況(有時(shí)要分析△),比較兩個(gè)根的大小,設(shè)根為(或更多)但含參數(shù),要討論。
本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/713661.html
相關(guān)閱讀:高二歷史《啟蒙運(yùn)動》教學(xué)指導(dǎo)