目標(biāo):
1、通過(guò)本節(jié)課課前及課堂上的探索研究過(guò)程,使學(xué)生理解橢圓的定義,掌握橢圓的標(biāo)準(zhǔn)方程;
2、復(fù)習(xí)和鞏固求軌跡方程的基本方法.
3、能夠理解橢圓軌跡和方程之間的關(guān)系,進(jìn)一步提高學(xué)生解析能力;
重點(diǎn):
1、橢圓的定義和橢圓的標(biāo)準(zhǔn)方程及其求法,
2、橢圓曲線(xiàn)和方程之間的相互關(guān)系.
教學(xué)難點(diǎn):
1、建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓標(biāo)準(zhǔn)方程.
2、利用橢圓的定義和標(biāo)準(zhǔn)方程研究曲線(xiàn).
教學(xué)方式:體驗(yàn)式
教學(xué)手段:多媒體演示.
學(xué)生特點(diǎn):本節(jié)課的教學(xué)對(duì)象為高中實(shí)驗(yàn)班學(xué)生,數(shù)學(xué)基礎(chǔ)較好.
教學(xué)過(guò)程:
1、給出橢圓定義
由學(xué)生根據(jù)課前的預(yù)習(xí)敘述橢圓的定義:
1)橢圓的定義:
平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于 )的點(diǎn)的軌跡(或集合)叫做橢圓.F1, F2叫做橢圓的焦點(diǎn); 叫做橢圓的焦距.
2)展示學(xué)生通過(guò)預(yù)習(xí)橢圓知識(shí),結(jié)合橢圓的知識(shí)所作的“圖形”,并介紹橢圓的做法,幫助同學(xué)了解橢圓的定義,同時(shí)引出橢圓標(biāo)準(zhǔn)方程
2、推導(dǎo)橢圓標(biāo)準(zhǔn)方程
推導(dǎo)方程:(以下方程推導(dǎo)過(guò)程由學(xué)生完成)
①建系:以 和 所在直線(xiàn)為 軸,線(xiàn)段 的中點(diǎn)為原點(diǎn)建立直角坐標(biāo)系;
②設(shè)點(diǎn):設(shè) 是橢圓上任意一點(diǎn),設(shè) ,則 , ;
③列式:由 得 ;
④化簡(jiǎn):移項(xiàng)平方后得 ,
整理得, ,
兩邊平方后整理得,
由橢圓的定義知, ,即 ,∴ ,令 ,其中 ,代入上式,得 ,兩邊除以 ,得: ( ))
3.進(jìn)一步認(rèn)識(shí)橢圓標(biāo)準(zhǔn)方程
(掌握橢圓的標(biāo)準(zhǔn)方程,以及兩種標(biāo)準(zhǔn)方程的區(qū)分)
(1)方程 ( )叫做橢圓的標(biāo)準(zhǔn)方程.它表示焦點(diǎn)在 軸上,焦點(diǎn)坐標(biāo)為 , ,其中 .
(2)方程方程 ( )也是橢圓的標(biāo)準(zhǔn)方程.它表示焦點(diǎn)在 軸上,焦點(diǎn)坐標(biāo)為 , ,其中 .
4.通過(guò)例題鞏固橢圓的標(biāo)準(zhǔn)方程.
例1 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
(1) 兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-3,0),(3,0),橢圓上任意一點(diǎn)與兩焦點(diǎn)的距離的和等于8;
(2) 兩個(gè)焦點(diǎn)的坐標(biāo)分別是(0,-4),(0,4),并且橢圓經(jīng)過(guò)點(diǎn) .
5.再次展示學(xué)生所作橢圓,讓學(xué)生利用橢圓方程和橢圓定義來(lái)判斷所作的“橢圓”,并說(shuō)明判斷的依據(jù),進(jìn)一步橢圓定義和橢圓的標(biāo)準(zhǔn)方程.
6.小結(jié):
這節(jié)課我們圍繞橢圓及其標(biāo)準(zhǔn)方程研究了橢圓這幾個(gè)方面的問(wèn)題:
(1)橢圓的定義;
(2)橢圓的標(biāo)準(zhǔn)方程推導(dǎo);
(3)利用橢圓的定義和標(biāo)準(zhǔn)方程研究曲線(xiàn);
7.作業(yè):
本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/gaoer/77157.html
相關(guān)閱讀: