在高考數(shù)學(xué)復(fù)習(xí)資料中,不等式這部分知識(shí),滲透在中學(xué)數(shù)學(xué)各個(gè)分支中,有著十分廣泛的應(yīng)用。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較復(fù)雜的不等式化歸為較簡單的或基本不等式,通過構(gòu)造函數(shù)、數(shù)形結(jié)合,則可將不等式的解化歸為直觀、形象的圖形關(guān)系,對(duì)含有參數(shù)的不等式,運(yùn)用圖解法可以使得分類標(biāo)準(zhǔn)明晰。
在高考數(shù)學(xué)復(fù)習(xí)資料中,導(dǎo)數(shù)是微積分的初步知識(shí),是研究函數(shù),解決實(shí)際問題的有力工具。高三考生要熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
在高考數(shù)學(xué)復(fù)習(xí)資料中,立體幾何試題一般共有4道(選擇、填空題3道,解答題1道),共計(jì)總分27分左右,考查的知識(shí)點(diǎn)在20個(gè)以內(nèi)。有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決“平行與垂直”的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
(來源:新東方在線論壇)
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaokao/929226.html
相關(guān)閱讀:高考復(fù)習(xí)過程中常見的十種問題及解決方案