高考數(shù)學一輪復習:數(shù)學答題方法

編輯: 逍遙路 關鍵詞: 高三學習指導 來源: 高中學習網(wǎng)

【摘要】高一高二的同學忙著準備期中考試的時候,高三的同學們正在進行緊張的高考前地理論復習,下面是準備的“高考數(shù)學一輪復習:數(shù)學答題方法”歡迎大家點擊參考!

對于中學階段用于解答數(shù)學問題的方法,可將其分為三類:

(1)具有創(chuàng)立學科功能的方法。如公理化方法、模型化方法、結構化方法,以及集合論方法、極限方法、坐標方法、向量方法等。在具體的解題中,具有統(tǒng)帥全局的作用。

(2)體現(xiàn)一般思維規(guī)律的方法。如觀察、試驗、比較、分類、猜想、類比、聯(lián)想、歸納、演繹、分析、綜合等。在具體的解題中,有通性通法、適應面廣的特征,常用于思路的發(fā)現(xiàn)與探求。

(3)具體進行論證演算的方法。這又可以依其適應面分為兩個層次:第一層次是適應面較寬的求解方法,如消元法、換元法、降次法、待定系數(shù)法、反證法、同一法、數(shù)學歸納法(即遞推法)、坐標法、三角法、數(shù)形結合法、構造法、配方法等等;第二層次是適應面較窄的求解技巧,如因式分解法以及因式分解里的“裂項法”、函數(shù)作圖的“描點法”、以及三角函數(shù)作圖的“五點法”、幾何證明里的“截長補短法”、“補形法”、數(shù)列求和里的“裂項相消法”等。

我們知道,數(shù)學是關于數(shù)與形的科學,數(shù)與形的有機結合是數(shù)學解題的基本思想。數(shù)學是關于模式的科學,這反映了在數(shù)學解題時,需要進行“模式識別”,需要構建標準的模型。往往遇到的問題是標準模型里的參數(shù)是需要待定的,這說明待定系數(shù)法屬于解題的通性通法。數(shù)學是一種符號,引入符號可以將自然語言轉換為符號語言,通過中間量的代換,就能將復雜問題簡單化。數(shù)學解題就是一系列連續(xù)的化歸與轉化,將復雜問題簡單化、陌生問題熟悉化,其消元、減少參變元的個數(shù)是常用的方法。在代數(shù)式的變形中,則往往要分離出非負的量,配方技術是經(jīng)常使用且很奏效的方法。

數(shù)形轉換、待定系數(shù)、變量代換、消元、配方法等是中學數(shù)學解題的通性通法。把幾何的直觀推理、代數(shù)的有序推理、解題的通性通法與具體的案例結合起來,整體把握數(shù)學解題的通性通法,抓住通性通法的本質,科學有效地實施解題分析、解題思維鏈的形成、解題后的反思與優(yōu)化,從而通過有限問題的訓練來獲得解答無限問題的解題智慧。

總結:以上就是“高考數(shù)學一輪復習:數(shù)學答題方法”的全部內容,請大家認真閱讀,鞏固學過的知識,小編祝愿同學們在努力的復習后取得優(yōu)秀的成績!

相關精彩內容推薦:


本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/142902.html

相關閱讀:高三花開不敗