目前高三的考生進入了第一輪復(fù)習的階段,小編為您搜集2014高考數(shù)學導(dǎo)數(shù)型備考,希望通過閱讀2014高考數(shù)學導(dǎo)數(shù)型備考一文,能幫助同學們有效的提高學習效率,歡迎點擊。
導(dǎo)數(shù)應(yīng)用的題型與方法
一、專題綜述
導(dǎo)數(shù)是微積分的初步知識,是研究函數(shù),解決實際問題的有力工具。在高中階段對于導(dǎo)數(shù)的學習,主要是以下幾個方面:
1.導(dǎo)數(shù)的常規(guī)問題:
(1)刻畫函數(shù)(比初等方法精確細微);(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);(3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于次多項式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應(yīng)引起注意。
二、知識整合
1.導(dǎo)數(shù)概念的理解。
2.利用導(dǎo)數(shù)判別可導(dǎo)函數(shù)的極值的方法及求一些實際問題的最大值與最小值。
復(fù)合函數(shù)的求導(dǎo)法則是微積分中的重點與難點內(nèi)容。課本中先通過實例,引出復(fù)合函數(shù)的求導(dǎo)法則,接下來對法則進行了證明。
3.要能正確求導(dǎo),必須做到以下兩點:
(1)熟練掌握各基本初等函數(shù)的求導(dǎo)公式以及和、差、積、商的求導(dǎo)法則,復(fù)合函數(shù)的求導(dǎo)法則。
(2)對于一個復(fù)合函數(shù),一定要理清中間的復(fù)合關(guān)系,弄清各分解函數(shù)中應(yīng)對哪個變量求導(dǎo)。
總結(jié):高考數(shù)學總結(jié)了2014高考數(shù)學導(dǎo)數(shù)型備考,望同學們好好閱讀,方便快速提高成績和學習效率。
推薦閱讀:
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/232907.html
相關(guān)閱讀:高三英語完形填空如何提高