甘肅省張掖市高臺縣第一中學(xué)2015屆高三下學(xué)期一診數(shù)學(xué)(理)試題

編輯: 逍遙路 關(guān)鍵詞: 高三 來源: 高中學(xué)習(xí)網(wǎng)
試卷說明:

一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求)1.已知集合,集合,則( )A. B. C. D.2.若復(fù)數(shù)z滿足(3-4i4+3i ,則z的虛部為 ( ) A.-4 B.- C.4 D.3.若,且與的夾角為,當(dāng)取得最小值時,實數(shù)的值為( )A.2 B. C.1 D.4.直線xsinα+y+2=0的傾斜角的取值范圍是(   ). A.[0,π) B. ∪ C. D. ∪5.一個幾何體按比例繪制的三視圖如右圖所示(單位:),則該幾何體的體積為( )A. B. C. D.6.在三棱錐A—BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC、△ACD、△ADB的面積分別為、、。則三棱錐A—BCD的外接球的體積為( )A. B. C. D.7.執(zhí)行圖所示的程序框圖(表示不超過的最大整數(shù)),則輸出的值為 A.7 B.6 C.5 D.48.已知函數(shù),若方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍為 ( ) A、 B、 C、 D、。9.如圖,A,F(xiàn)分別是雙曲線的左頂點、右焦點,過F的直線l與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點.若AP⊥AQ,則C的離心率是( ) A. B. C. D.10.設(shè)是等差數(shù)列的前項和,若,則=( )A.1 B.-1 C.2 D.在直角三角形中,,,點是斜邊上的一個三等分點,則( )A.0 B. C.D.12.記實數(shù)中的最大數(shù)為,最小值為。已知的三邊邊長為,定義它的傾斜度為,則是“為等邊三角形”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件第Ⅱ卷 (90分)二、填空題: 本大題共4小題,每小題5分,共20分.13.已知則= 14.已知,且,則的最小值是 .的第項是二項式展開式的常數(shù)項,則 .16.已知函數(shù), 若, 則實數(shù)的取值范圍 三、解答題:本大題共5小題,每小題12分,共60分.解答應(yīng)寫出文字說明、證明過程或演算步驟.17.(本小?滿分12分)設(shè)函數(shù).其中(1)求的最小正周期;(2)當(dāng)時,求實數(shù)的值,使函數(shù)的值域恰為并求此時在上的對稱中心.18.(本小?滿分12分)如圖,在三棱錐中,,,°平面平面,、分別為、中點()求證:平面()求證:;()求二面角的大小19.(本小?滿分12分)為了參加2015年市級高中籃球比賽,該市的某區(qū)決定從四所高中學(xué)校選出人組成男子籃球隊代表所在區(qū)參賽,隊員來源人數(shù)如下表:學(xué)校學(xué)校甲學(xué)校乙學(xué)校丙學(xué)校丁人數(shù)該區(qū)籃球隊經(jīng)過奮力拼搏獲得冠軍,現(xiàn)要從中選出兩名隊員代表冠軍隊發(fā)言.(Ⅰ)求這兩名隊員來自同一學(xué)校的概率;(Ⅱ)設(shè)選出的兩名隊員中來自學(xué)校甲的人數(shù)為,求隨機變量的分布列及數(shù)學(xué)期望.20.(本小?滿分12分)已知橢圓:的左、右焦點分別為、,橢圓上的點滿足,且△的面積為.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)橢圓的左、右頂點分別為、,過點的動直線與橢圓相交于、兩點,直線與直線的交點為,證明:點總在直線上.21.(本小?滿分12分)已知函數(shù),其中a是實數(shù),設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的點,且x1<x2.(I)指出函數(shù)f(x)的單調(diào)區(qū)間;(II)若函數(shù)f(x)的圖象在點A,B處的切線互相垂直,且x2<0,求x2?x1的最小值;(III)若函數(shù)f(x)的圖象在點A,B處的切線重合,求a的取值范圍.,AE=6,求EC的長.23.(本小題滿分10分)選修4—4:坐標(biāo)系與參數(shù)方程 ,Q都在曲線C:(β為參數(shù))上,對應(yīng)參數(shù)分別為與(0<<2π),M為PQ的中點。(Ⅰ)求M的軌跡的參數(shù)方程(Ⅱ)將M到坐標(biāo)原點的距離d表示為的函數(shù),并判斷M的軌跡是否過坐標(biāo)原點。24.(本小題滿分10分)選修4—5:不等式選講 已知函數(shù). ()當(dāng)時,求不等式的解集;()設(shè)且當(dāng)時,求的取值范圍又 3分若,顯然成立,若, 即證明∵成立, 11分∴共線,即點總在直線上. 12分21.(I)f(x)在(?∞,?1)上單調(diào)遞減,在(?1,0)上單調(diào)遞增(II)1(III)(?1?ln2,+∞)Ⅰ)由題意有,, ,因此,M的軌跡的參數(shù)方程為,(為參數(shù),).(Ⅱ)M點到坐標(biāo)原點的距離為,當(dāng)時,,故M的軌跡過坐標(biāo)原點.24.(1)當(dāng)時,令,作出函數(shù)圖像可知,當(dāng)時,,故原不等式的解集為;(2)依題意,原不等式化為,故對都成立,故,故,故的取值范圍是.側(cè)視圖1正視圖111俯視圖11甘肅省張掖市高臺縣第一中學(xué)2015屆高三下學(xué)期一診數(shù)學(xué)(理)試題
本文來自:逍遙右腦記憶 http://yy-art.cn/gaosan/384421.html

相關(guān)閱讀:2018年高考數(shù)學(xué)必修一選擇題解題技巧