1.分類計(jì)數(shù)原理(也稱加法原理):做一件事情,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N= 種不同的方法.
2.分步計(jì)數(shù)原理(也稱乘法原理):做一件事情,完成它需要分成n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,……,做n步有mn種不同的方法,那么完成這件事共有N= 種不同的方法.
3.一般地說,從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.
4.從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從 個(gè)為不同元素中取出m個(gè)元素的排列數(shù),用符號(hào)Amn表示.排列數(shù)公式Amn = 5.n個(gè)不同元素全部取出的一個(gè)排列,叫做n個(gè)不同元素的一個(gè)全排列,全排列數(shù)用Ann表示,它等于自然數(shù)從1到n的連乘積,自然數(shù)從1到n的連乘積叫做n的階乘,用 表示.
6.一般地說,從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.
7.從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù),用符號(hào)Cmn表示.
組合數(shù)公式 = =
8.排列與組合的共同點(diǎn),就是都要“從n個(gè)不同元素中,任取 個(gè)元素”,而不同點(diǎn)就是前者要“按一定的順序成一列”,而后者卻是“不論怎樣的順序并成一組”.
排列、組合的概念具有廣泛的實(shí)際意義,解決排列、組合問題,關(guān)鍵要搞清楚是否與元素的順序有關(guān)。復(fù)雜的排列、組合問題往往是對(duì)元素或位置進(jìn)行限制,因此掌握一些基本的排列、組合問題的類型與解法對(duì)學(xué)好這部分知識(shí)很重要。
一. 特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),對(duì)于這類問題一般采取特殊元素(位置)優(yōu)先安排的方法。
例1.6人站成一橫排,其中甲不站左端也不站右端,有多少種不同站法?
二. 相鄰問題用捆綁法:對(duì)于要求某幾個(gè)元素必須排在一起的問題,可用“捆綁法”:即將這幾個(gè)元素看作一個(gè)整體,視為一個(gè)元素,與其他元素進(jìn)行排列,然后相鄰元素內(nèi)部再進(jìn)行排列。
例2.5個(gè)男生和3個(gè)女生排成一排,3個(gè)女生必須排在一起,有多少種不同排法?
三. 不相鄰問題用插空法:元素不相鄰問題,可以先將其他元素排好,然后再將不相鄰的元素插入已排好的元素位置之間和兩端的空中。
例3. 7人排成一排,甲、乙、丙3人互不相鄰有多少種排法?
四. 定序問題用除法:對(duì)于在排列中,當(dāng)某些元素次序一定時(shí),可用此法。解題方法是:先將n個(gè)元素進(jìn)行全排列有 種, 個(gè)元素的全排列有 種,由于要求m個(gè)元素次序一定,因此只能取其中的某一種排法,可以利用除法起到調(diào)序的作用,即若n個(gè)元素排成一列,其中m個(gè)元素次序一定,則有 種排列方法。
例4. 由數(shù)字0、1、2、3、4、5組成沒有重復(fù)數(shù)字的六位數(shù),其中個(gè)位數(shù)字小于十位數(shù)字的六位數(shù)有多少個(gè)?
五. 分排問題用直排法:對(duì)于把幾個(gè)元素分成若干排的排列問題,若沒有其他特殊要求,可采取統(tǒng)一成一排的方法求解。
例5. 9個(gè)人坐成三排,第一排2人,第二排3人,第三排4人,則不同的坐法共有多少種?
六.“小團(tuán)體”排列問題中先整體后局部的策略
例6. 7個(gè)人排成一行,甲乙兩人間恰有3人的排法共有多少種?
七. 復(fù)雜問題用排除法:對(duì)于某些比較復(fù)雜的或抽象的排列問題,可以采用轉(zhuǎn)化思想,從問題的反面去考慮,先求出無限制條件的方法種數(shù),然后去掉不符合條件的方法種數(shù)。在應(yīng)用此法時(shí)要注意做到不重不漏。
例7. 四面體的頂點(diǎn)和各棱中點(diǎn)共有10個(gè)點(diǎn),取其中4個(gè)不共面的點(diǎn),則不同的取法共有( )A. 150種B. 147種C. 144種D. 141種
八. 多元問題用分類法:按題目條件,把符合條件的排列、組合問題分成互不重復(fù)的若干類,分別計(jì)算,最后計(jì)算總數(shù)。
例8.已知直線 中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3個(gè)不同的元素,并且該直線的傾斜角為銳角,求符合這些條件的直線的條數(shù)。
九. 排列、組合綜合問題用先選后排的策略:
例9. 將4名教師分派到3所中學(xué)任教,每所中學(xué)至少1名教師,則不同的分派方案共有多少種?
十. 隔板模型法:常用于解決整數(shù)分解型排列、組合的問題。
例10. 有10個(gè)三好學(xué)生名額,分配到6個(gè)班,每班至少1個(gè)名額,共有多少種不同的分配方案?
練習(xí)題:
1、4人跑4×100米接力賽,(1)甲、乙都不跑第一棒的安排方法有 種,
(2)甲不跑第一棒,乙不跑第四棒的安排方法有 種,
(3)甲不跑第一棒也不跑第四棒的安排方法有 種。
2、用0、2、3、4、5這五個(gè)數(shù)字,組成沒有重復(fù)數(shù)字的三位數(shù),其中偶數(shù)共有 個(gè)
3、平面上4條平行直線與另外5條直線互相垂直,則它們構(gòu)成的矩形共有 個(gè)
4、從四臺(tái)甲型和五臺(tái)乙型電視機(jī)中任意取出三臺(tái),其中至少要有甲型與乙型各一臺(tái),則不同的取法有 種。
5、在一個(gè)正六邊形的六個(gè)區(qū)域栽種觀賞植物,要求同一塊中種同一種植物,相鄰的兩塊種不同的植物,現(xiàn)有4種不同的植物可供選擇,則有 種栽種方案。
6、從0、1、2、…、9這十個(gè)數(shù)字中取出三個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒有重復(fù)數(shù)字的五位數(shù),共有 個(gè)。
7、4個(gè)不同的小球,放入編號(hào)為1、2、3、4的四個(gè)盒中,恰有一個(gè)空盒的放法
有 種;恰有兩個(gè)空盒的放法有 種。
8、將標(biāo)號(hào)為1、2、…、10的10個(gè)球放入標(biāo)號(hào)為1、2、…、10的10個(gè)盒子內(nèi),每個(gè)盒內(nèi)放一球,則恰好有3個(gè)球的標(biāo)號(hào)與其所在盒子的標(biāo)號(hào)不一致的放法共
有 種。
9、5名學(xué)生和3名老師站成一排照相,3名老師必須站在一起的不同排法有 種
10.4名男生和3名女生排成一排,其中有且僅有兩名女生相鄰的排法有 種
11、6人站成一排,其中甲、乙、丙不全相鄰的排法共有 種。
12.要使品種不同的4棵楊樹和3棵柳樹栽一行。任何兩棵柳樹不相鄰的栽
有 種;楊柳相間的栽法有 種。
13、7個(gè)人排成一行照相,其中甲、乙要求在一起,丙、丁要求分開,則不同的排法有 種。
14、三個(gè)人坐在一排8個(gè)座位上,若每人左右兩邊豆都有空位,那么共有 種不同的坐法。
15、7個(gè)人排成一行,其中甲、乙、丙按自左至右的順序不變的排法有 種。
16、從1、2、3、…、9這9個(gè)數(shù)中任取7個(gè)數(shù),按從小到大的順序排成一列,則不同排列的個(gè)數(shù)是 。
17、7個(gè)人排成一行,甲、乙兩人間恰有3人的排法共有 種
18.馬路上有編號(hào)為1, 2, 3, 4…..10的十盞路燈,為節(jié)約用電,又不影響照明可以把其中的三盞關(guān)掉,但不能關(guān)掉相鄰的兩盞,也不能關(guān)掉兩端的路燈,則滿足條件的關(guān)燈方法種數(shù)有_______種.
19、6本不同的書,按照以下要求處理,各有幾種分法?
(1)一堆一本,一堆兩本,一堆三本;
(2)甲得一本,乙得兩本,丙得三本;
(3)一人得一本,一人得兩本,一人得三本;
(4)平均分給甲、乙、丙三人;
(5)平均分成三堆。
20、6個(gè)人進(jìn)兩間屋子,各有多少種分配方法?
(1)每屋都進(jìn)3人;
(2)每屋至少進(jìn)1人;
(3)每屋至少進(jìn)2人;
高考題匯編
1.(2009寧夏海南卷)7名志愿者中安排6人在周六、周日兩天參加社區(qū)公益活動(dòng)。若每天安排3人,則不同的安排方案共有________________種(用數(shù)字作答)。
2.(2009浙江卷理)甲、乙、丙 人站到共有 級(jí)的臺(tái)階上,若每級(jí)臺(tái)階最多站 人,同一級(jí)臺(tái)階上的人不區(qū)分站的位置,則不同的站法種數(shù)是 (用數(shù)字作答).
3.(2009北京卷文)用數(shù)字1,2,3,4,5組成的無重復(fù)數(shù)字的四位偶數(shù)的個(gè)數(shù)為 ( )A.8B.24C.48D.120
4.(2009北京卷理)用0到9這10個(gè)數(shù)字,可以組成沒有重復(fù)數(shù)字的三位偶數(shù)的個(gè)數(shù)為( ) A.324 B.328 C.360 D.648
5.(2009全國(guó)卷Ⅱ文)甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中恰有1門相同的選法有 (A)6種 (B)12種 (C)24種 (D)30種
6. (2009全國(guó)卷Ⅱ理)甲、乙兩人從4門課程中各選修2門。則甲、乙所選的課程中至少有1門不相同的選法共有 A. 6種 B. 12種 C. 30種 D. 36種
7.(2009遼寧卷理)從5名男醫(yī)生、4名女醫(yī)生中選3名醫(yī)生組成一個(gè)醫(yī)療小分隊(duì),要求其中男、女醫(yī)生都有,則不同的組隊(duì)方案共有
(A)70種 (B) 80種 (C) 100種 (D)140種
8.(2009重慶卷)將4名大學(xué)生分配到3個(gè)鄉(xiāng)鎮(zhèn)去當(dāng)村官,每個(gè)鄉(xiāng)鎮(zhèn)至少一名,則不同的分配方案有 種(用數(shù)字作答).
9.(2009湖南卷)從10名大學(xué)生畢業(yè)生中選3個(gè)人擔(dān)任村長(zhǎng)助理,則甲、乙至少有1人入選,而丙沒有入選的不同選法的種數(shù)位 ( )
A 85 B 56 C 49 D 28
10.(2009湖北卷理)將甲、乙、丙、丁四名學(xué)生分到三個(gè)不同的班,每個(gè)班至少分到一名學(xué)生,且甲、乙兩名學(xué)生不能分到同一個(gè)班,則不同分法的種數(shù)為
11.(2009陜西卷文)從1,2,3,4,5,6,7這七個(gè)數(shù)字中任取兩個(gè)奇數(shù)和兩個(gè)偶數(shù),組成沒有重復(fù)數(shù)字的四位數(shù),其中奇數(shù)的個(gè)數(shù)為
(A)432 (B)288 (C) 216 (D)108
12.(2009湖北卷文)從5名志愿者中選派4人在星期五、星期六、星期日參加公益活動(dòng),每人一天,要求星期五有一人參加,星期六有兩人參加,星期日有一人參加,則不同的選派方法共有
A.120種 B.96種 C.60種 D.48種
13.(2009湖南卷文)某地政府召集5家企業(yè)的負(fù)責(zé)人開會(huì),其中甲企業(yè)有2人到會(huì),其余4家企業(yè)各有1人到會(huì),會(huì)上有3人發(fā)言,則這3人來自3家不同企業(yè)的可能情況的種數(shù)為( )
A.14 B.16 C.20 D.48
14.(2009全國(guó)卷Ⅰ)甲組有5名男同學(xué)、3名女同學(xué);乙組有6名男同學(xué)、2名女同學(xué),若從甲、乙兩組中各選出2名同學(xué),則選出的4人中恰有1名女同學(xué)的不同選法共有( )
(A)150種(B)180種 (C)300種(D)345種
音美班案:二項(xiàng)式定理
1.(a+b)n= (n∈N),這個(gè)公式稱做二項(xiàng)式定理,右邊的多項(xiàng)式叫做(a+b)n的二項(xiàng)展開式,其中的系數(shù) 叫做二項(xiàng)式系數(shù).式中的 叫做二項(xiàng)展開式的通項(xiàng),用Tr+1表示,即通項(xiàng)公式Tr+1= 是表示展開式的第r+1項(xiàng).
2.二項(xiàng)式定理中,二項(xiàng)式系數(shù)的性質(zhì)有:
① 在二項(xiàng)式展開式中,與首末兩項(xiàng)“等距離”的兩項(xiàng)二項(xiàng)式系數(shù)相等,即:
② 如果二項(xiàng)式的冪指數(shù)是偶數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大;如果二項(xiàng)式的冪指數(shù)是奇數(shù),中間兩項(xiàng)的二項(xiàng)式系數(shù)相等并且最大,即當(dāng)n是偶數(shù)時(shí),n+1是奇數(shù),展開式共有n+1項(xiàng),中間一項(xiàng),即:第 項(xiàng)的二項(xiàng)式系數(shù)最大,為 ;當(dāng)n是奇數(shù)時(shí),n+1是偶數(shù),展開式共有n+1項(xiàng),中間兩項(xiàng),即第 項(xiàng)及每 項(xiàng),它們的二項(xiàng)式系數(shù)最大,為 ③ 二項(xiàng)式系數(shù)的和等于?????????,即????????????④ 二項(xiàng)展開式中,偶數(shù)項(xiàng)系數(shù)和等于奇數(shù)項(xiàng)的系數(shù)和
3.對(duì)二項(xiàng)式定理的考查主要有以下兩種題型:
(1)求二項(xiàng)展開式中的指定項(xiàng)問題:方法主要是運(yùn)用二項(xiàng)式展開的通項(xiàng)公式;
(2)求二項(xiàng)展開式中的多個(gè)系數(shù)的和:此類問題多用賦值法;要注意二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)的區(qū)別;求二項(xiàng)式所有項(xiàng)的系數(shù)和,可采用“特殊值取代法”,通常令字母變量的值為1
例1.(1)若(ax-1)5的展開式中x3的系數(shù)是-80,則實(shí)數(shù)a的值是
(2)(1+x)+(1+x)2+(1+x)3+……+(1+x)6展開式中x2項(xiàng)的系數(shù)為 .
(3)若 ,則 的值是( )A. B.1 C.0D.2
例2. 已知二項(xiàng)式 ,(n∈N )的展開式中第5項(xiàng)的系數(shù)與第3項(xiàng)的系數(shù)的比是10:1,求展開式中各項(xiàng)的系數(shù)和
練習(xí)題:
1.(2009重慶卷文) 的展開式中 的系數(shù)是( ).
A.20B.40C.80D.160
2.(2009重慶卷理) 的展開式中 的系數(shù)是( )
A.16B.70C.560D.1120
3.(2009浙江卷理)在二項(xiàng)式 的展開式中,含 的項(xiàng)的系數(shù)是( ) . A. B. C. D.
4.(2009四川卷) 的展開式的常數(shù)項(xiàng)是 (用數(shù)字作答)
5.(2009湖南卷文)在 的展開式中, 的系數(shù)為 (用數(shù)字作答).
6.(2009湖南卷)在 的展開式中, 的系數(shù)為_____(用數(shù)字作答)
7.(2009全國(guó)卷Ⅰ) 的展開式中, 的系數(shù)與 的系數(shù)之和等于 。
8. 的展開式中 的系數(shù)是( )A. B. C.3D.4
9. 展開式中的常數(shù)項(xiàng)為( ) A.1 B. C. D.
10.若(x+ )n的展開式中前三項(xiàng)的系數(shù)成等差數(shù),則展開式中x4項(xiàng)的系數(shù)為( )(A)6 (B)7 (C)8 (D)9
11.設(shè) 則 中奇數(shù)的個(gè)數(shù)為( )
A.2 B.3 C.4 D.5
12. 的展開式中常數(shù)項(xiàng)為 ;各項(xiàng)系數(shù)之和為 .(用數(shù)字作答)
13. 展開式中 的系數(shù)為_______________。
音美班案 等可能性事件的概率
等可能性事件的概率:如果一次試驗(yàn)由n個(gè)基本事件組成,而且所有結(jié)果出現(xiàn)的可能性都相等,那么每一個(gè)基本事件的概率是 .如果某個(gè)事件A包含的結(jié)果有m個(gè),那么事件A的概率:
例1.從數(shù)字1,2,3,4,5中任取3個(gè),組成沒有重復(fù)數(shù)字的三位數(shù),計(jì)算:
①這個(gè)三位數(shù)字是5的倍數(shù)的概率;
②這個(gè)三位數(shù)是奇數(shù)的概率;
③這個(gè)三位數(shù)大于400的概率.
例2. 在一次口試中,要從20道題中隨機(jī)抽出6道題進(jìn)行回答,答對(duì)了其中的5道就獲得優(yōu)秀,答對(duì)其中的4道就可獲得及格.某考生會(huì)回答20道題中的8道題,試求:(1)他獲得優(yōu)秀的概率是多少?(2)他獲得及格與及格以上的概率有多大?
音美班教學(xué)案 互斥事件有一個(gè)發(fā)生的概率
1.如果事件A、B互斥,那么事件A+B發(fā)生的概率,等于 .即P(A+B)= .
2.由于 是一個(gè)必然事件,再加上 ,故 ,于是 ,這個(gè)公式很有用,常可使概率的計(jì)算得到簡(jiǎn)化.當(dāng)直接求某一事件的概率較為復(fù)雜時(shí),可轉(zhuǎn)化去求其對(duì)立事件的概率.
例3.袋中有紅、黃、白3種顏色的球各1只,從中每次任取1只,有放回地抽取3次,求:(1)3只全是紅球的概率.(2)3只顏色全相同的概率.(3)3只顏色不全相同的概率.(4)3只顏色全不相同的概率.
變式訓(xùn)練1:盒中有6只燈泡,其中2只是次品,4只是正品,從其中任取兩只,試求下列事件的概率:
① 取到兩只都是次品;
② 取到兩只中正品、次品各1只;
②取到兩只中至少有1只正品.
音美班教學(xué)案 相互獨(dú)立事件同時(shí)發(fā)生的概率
1.事件A(或B)是否發(fā)生對(duì)事件B(或A)發(fā)生的概率 ,這樣的兩個(gè)事件叫獨(dú)立事件.
2.設(shè)A,B是兩個(gè)事件,則A?B表示這樣一個(gè)事件:它的發(fā)生,表示事件A,B ,類似地可以定義事件A1?A2?……An.
3.兩個(gè)相互獨(dú)立事件A,B同時(shí)發(fā)生的概率,等于每個(gè)事件發(fā)生的概率的積,即P(A?B)
= 一般地,如果事件 相互獨(dú)立,那么:P(A1?A2……An)= .
4.n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生 次的概率:如果在一次試驗(yàn)中某事件發(fā)生的概率是P,那么在 次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生 次的概率是 .
例4. 兩臺(tái)雷達(dá)獨(dú)立工作,在一段時(shí)間內(nèi),甲雷達(dá)發(fā)現(xiàn)飛行目標(biāo)的概率是0.9,乙雷達(dá)發(fā)現(xiàn)目標(biāo)的概率是0.85,計(jì)算在這一段時(shí)間內(nèi),下列各事件的概率:
(1)甲、乙兩雷達(dá)均未發(fā)現(xiàn)目標(biāo);
(2)至少有一臺(tái)雷達(dá)發(fā)現(xiàn)目標(biāo);
(3)至多有一臺(tái)雷達(dá)發(fā)現(xiàn)目標(biāo)
變式訓(xùn)練2:甲、乙、丙三人分別獨(dú)立解一道題,甲做對(duì)的概率為 ,甲、乙、丙三人都做對(duì)的概率是 ,甲、乙、丙三人全做錯(cuò)的概率是 .
(1)求乙、丙兩人各自做對(duì)這道題的概率;
(2)求甲、乙、丙三人中恰有一人做對(duì)這一道題的概率.
音美班教學(xué)案 離散型隨機(jī)變量的分布列 期望與方差(理)
1.如果隨機(jī)試驗(yàn)的結(jié)果可以用一個(gè)變量來表示,那么這樣的變量叫做 ,隨機(jī)變量通常用希臘字母 , 等表示.
2.如果隨機(jī)變量可能取的值 ,那么這樣的隨機(jī)變量叫做離散型隨機(jī)變量.
3.從函數(shù)的觀點(diǎn)來看,P( =xk)=Pk,k=1, 2, …,n,…稱為離散型隨機(jī)變量 的概率函數(shù)或概率分布,這個(gè)函數(shù)可以用 表示,這個(gè) 叫做離散型隨機(jī)變量的分布列.
4.離散型隨機(jī)變量分布列的性質(zhì)
(1) 所有變量對(duì)應(yīng)的概率值(函數(shù)值)均為非負(fù)數(shù),即 .
(2) 所有這些概率值的總和為 即 .
5.二項(xiàng)分布:如果在一次試驗(yàn)中某事件發(fā)生的概率為P,那么在n次獨(dú)立重復(fù)試驗(yàn)中這個(gè)事件恰好發(fā)生k次的概率 ,由于 是二項(xiàng)式展開式 的通項(xiàng),所以稱這個(gè)分布為二項(xiàng)分布列,記作
6.若離散型隨機(jī)變量 的分布列為 .則稱 為 的數(shù)學(xué)期望.它反映了離散型隨機(jī)變量取值的平均水平.
7.對(duì)于隨機(jī)變量 ,稱 為 的方差. 的算術(shù)平方根 叫做 的標(biāo)準(zhǔn)差.隨機(jī)變量 的方差與標(biāo)準(zhǔn)差都反映了隨機(jī)變量取值的 .
8.?dāng)?shù)學(xué)期望與方差的性質(zhì):若 ( 為隨機(jī)變量),則 , .
9.服從二項(xiàng)分布的隨機(jī)變量 的期望與方差:若 ,
1.(2008重慶)從編號(hào)為1,2,…,10的10個(gè)大小相同的球中任取4個(gè),則所取4個(gè)球的最大號(hào)碼是6的概率為( ) (A) (B) (C) (D)
2.(2008山東)在某地的奧運(yùn)火炬?zhèn)鬟f活動(dòng)中,有編號(hào)為1,2,3,…,18的18名火炬手.若從中任選3人,則選出的火炬手的編號(hào)能組成3為公差的等差數(shù)列的概率為( ) (A) 。˙) (C) 。―)
3.(2008福建)某一批花生種子,如果每1粒發(fā)牙的概率為 ,那么播下4粒種子恰有2粒發(fā)芽的概率是( 。〢. B. C. D.
4.(2009重慶卷)鍋中煮有芝麻餡湯圓6個(gè),花生餡湯圓5個(gè),豆沙餡湯圓4個(gè),這三種湯圓的外部特征完全相同。從中任意舀取4個(gè)湯圓,則每種湯圓都至少取到1個(gè)的概率為( )
A. B. C. D.
5.(2009重慶卷)12個(gè)籃球隊(duì)中有3個(gè)強(qiáng)隊(duì),將這12個(gè)隊(duì)任意分成3個(gè)組(每組4個(gè)隊(duì)),則3個(gè)強(qiáng)隊(duì)恰好被分在同一組的概率為( )
A. B. C. D.
6.(2009山東卷文)在區(qū)間 上隨機(jī)取一個(gè)數(shù)x, 的值介于0到 之間的概率為( ).A. B. C. D.
7.(2009山東卷理)在區(qū)間[-1,1]上隨機(jī)取一個(gè)數(shù)x, 的值介于0到 之間的概率為( ) A. B. C. D.
8.(2009安徽卷)從長(zhǎng)度分別為2、3、4、5的四條線段中任意取出三條,則以這三條線段為邊可以構(gòu)成三角形的概率是________。
9.(2009北京卷)某學(xué)生在上學(xué)路上要經(jīng)過4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是 ,遇到紅燈時(shí)停留的時(shí)間都是2min.(Ⅰ)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(文)(Ⅱ)這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間至多是4min的概率.
(理)(Ⅱ)求這名學(xué)生在上學(xué)路上因遇到紅燈停留的總時(shí)間 的分布列及期望.
10.(2009重慶卷文)某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為 和 ,且各株大樹是否成活互不影響.求移栽的4株大樹中:(Ⅰ)至少有1株成活的概率;(Ⅱ)兩種大樹各成活1株的概率.
10.(2009重慶卷理)某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為 和 ,且各株大樹是否成活互不影響.求移栽的4株大樹中:
求:(Ⅰ)兩種大樹各成活1株的概率;(Ⅱ)成活的株數(shù) 的分布列與期望.
11.(2009全國(guó)卷Ⅰ)甲、乙二人進(jìn)行一次圍棋比賽,約定先勝3局者獲得這次比賽的勝利,比賽結(jié)束。假設(shè)在一局中,甲獲勝的概率為0.6,乙獲勝的概率為0.4,各局比賽結(jié)果相互獨(dú)立。已知前2局中,甲、乙各勝1局。
(文)(Ⅰ)求再賽2局結(jié)束這次比賽的概率;(Ⅱ)求甲獲得這次比賽勝利的概率。
(理)(I)求甲獲得這次比賽勝利的概率;(II)設(shè) 表示從第3局開始到比賽結(jié)束所進(jìn)行的局?jǐn)?shù),求 得分布列及數(shù)學(xué)期望。
12.(2009全國(guó)卷Ⅱ)某車間甲組有10名工人,其中有4名女工人;乙組有10名工人,其中有6名女工人。現(xiàn)采用分層抽樣(層內(nèi)采用不放回簡(jiǎn)單隨即抽樣)從甲、乙兩組中共抽取4名工人進(jìn)行技術(shù)考核。(Ⅰ)求從甲、乙兩組各抽取的人數(shù);
(Ⅱ)求從甲組抽取的工人中恰有1名女工人的概率;
(文)(Ⅲ)求抽取的4名工人中恰有2名男工人的概率。.
(理)(III)記 表示抽取的3名工人中男工人數(shù),求 的分布列及數(shù)學(xué)期望。
13.(2009江西卷)某公司擬資助三位大學(xué)生自主創(chuàng)業(yè),現(xiàn)聘請(qǐng)兩位專家,獨(dú)立地對(duì)每位大學(xué)生的創(chuàng)業(yè)方案進(jìn)行評(píng)審.假設(shè)評(píng)審結(jié)果為“支持”或“不支持”的概率都是 .若某人獲得兩個(gè)“支持”,則給予10萬元的創(chuàng)業(yè)資助;若只獲得一個(gè)“支持”,則給予5萬元的資助;若未獲得“支持”,則不予資助.求:
(文)(1) 該公司的資助總額為零的概率;(2)資助總額超過15萬元的概率.. (理)令 表示該公司的資助總額.(1) 寫出 的分布列;(2) 求數(shù)學(xué)期望 .
14.(2008陜西省理)某射擊測(cè)試規(guī)則為:每人最多射擊3次,擊中目標(biāo)即終止射擊,第 次擊中目標(biāo)得 分,3次均未擊中目標(biāo)得0分.已知某射手每次擊中目標(biāo)的概率為0.8,其各次射擊結(jié)果互不影響.(Ⅰ)求該射手恰好射擊兩次的概率;
(Ⅱ)該射手的得分記為 ,求隨機(jī)變量 的分布列及數(shù)學(xué)期望.
15.(2009浙江卷理)在 這 個(gè)自然數(shù)中,任取 個(gè)數(shù).
(I)求這 個(gè)數(shù)中恰有 個(gè)是偶數(shù)的概率;
(II)設(shè) 為這 個(gè)數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為 ,則有兩組相鄰的數(shù) 和 ,此時(shí) 的值是 ).求隨機(jī)變量 的分布列及其數(shù)學(xué)期望 .
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaosan/72797.html
相關(guān)閱讀:2012屆高考數(shù)學(xué)第一輪導(dǎo)學(xué)案復(fù)習(xí):二次函數(shù)