2013~2014學(xué)年第一學(xué)期期中考試四校聯(lián)考高 一 年級(jí) 數(shù)學(xué) 試卷 命題學(xué)校:張家港市塘橋高級(jí)中學(xué) 命題人:徐建立注意事項(xiàng):考生在答題前請(qǐng)認(rèn)真閱讀本注意事項(xiàng)及各題答題要求1.本試卷共4頁,包括填空題(第1題~第14題)、解答題(第15題~第20題)兩部分.本試卷滿分160分,考試時(shí)間120分鐘.2.答題前,請(qǐng)您務(wù)必將自己的姓名、考試號(hào)用毫米黑色字跡的簽字筆填寫在試卷的指定位置.3.答題時(shí),必須用書寫黑色字跡的毫米簽字筆寫在試卷的指定位置,在其它位置作答一律無效.4.如有作圖需要,可用鉛筆作答,并請(qǐng)加黑加粗,描寫清楚.一、填空題:本大題共14小題,每小題5分,共計(jì)70分.(答案請(qǐng)寫在答題紙的指定位置)1. 已知集合,若,則 ▲ .2. 已知是實(shí)數(shù),若集合{}是任何集合的子集,則的值是.. ▲ .. 已知冪函數(shù)的圖象過點(diǎn),則.的定義域是 ▲ .的值域 ▲ .,,,則由小到大的順序是 ▲ .8. 方程的解在區(qū)間內(nèi),,則=.的方程的兩個(gè)根為,則實(shí)數(shù)的取值范圍是 ▲ ..圖像與函數(shù)圖象有四個(gè)公共點(diǎn),則的取值范圍是 ▲ ..的圖象可由的圖象向上平移2個(gè)單位,向右平移3個(gè)單位得到;②函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱;③在區(qū)間上函數(shù)的圖像始終在函數(shù)的圖像上方;④任一函數(shù)圖像與垂直于軸的直線都不可能有兩個(gè)交點(diǎn).13. 函數(shù)滿足,若,則與的大小關(guān)系是 ▲ .14. 已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時(shí),則方程有 ▲ 個(gè)實(shí)根(若有相同的實(shí)根,算一個(gè)).二、解答題:本大題共6小題,共計(jì)90分.解答應(yīng)寫出必要的文字步驟.(請(qǐng)寫在答題紙的指定位置)15.(本小題滿分14分) 已知函數(shù)的定義域?yàn)榧?函數(shù)的值域?yàn)榧?(1) 求出集合;(2) 求.16.(本小題14分).(1)求在上的值域;(2)解不等式;(3)若關(guān)于的方程在上有解,求的取值范圍.17.(本小題滿分15分)甲商店某種商品11月份(30天,11月1日為第一天)的銷售價(jià)格(元)與時(shí)間(天)函數(shù)關(guān)系如圖(一)所示,該商品日銷售量(件)與時(shí)間(天)函數(shù)關(guān)系如圖(二)所示.(1)寫出圖(一)表示的銷售價(jià)格與時(shí)間的函數(shù)關(guān)系式,寫出圖(二)表示的日銷售量與時(shí)間的函數(shù)關(guān)系式,及日銷售金額(元)與時(shí)間的函數(shù)關(guān)系并求的最大值;(2)乙商店銷售同一種商品,在11月份采用另一種銷售策略,日銷售金額(元)與時(shí)間(天)之間的函數(shù)關(guān)系為. 試比較11月份每天兩商店銷售金額的大小.18.(本小題滿分15分)已知定義域?yàn)榈暮瘮?shù)是奇函數(shù).(1)求的值;(2)判斷函數(shù)的單調(diào)性并加以證明;(3)若對(duì)任意的,不等式恒成立,求的取值范圍.19.(本小題滿分16分) 已知函數(shù) (為實(shí)常數(shù)). (1)若,求的單調(diào)增區(qū)間;(2)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍;(3)若,設(shè)在區(qū)間的最小值為,求的表達(dá)式.20.(本小題滿分16分)函數(shù)的定義域,且滿足對(duì)于任意,有.(1)求與的值;(2)判斷函數(shù)的奇偶性并證明;(3)若時(shí),,求證在區(qū)間(0,+∞)上是增函數(shù);(4)在(3)的條件下,若,求不等式的解集.2013~2014學(xué)年第一學(xué)期期中考試四校聯(lián)考高 一 年級(jí) 數(shù)學(xué) 試卷參考答案一、填空題1. 2. 0 3. 2 4. 5. 6. 7. 8. 2 9. 10. 11. 12.①④ 13. 14. 2 二、解答題15.解:(1)由(2+x)(3(x)>0 解得A=((2,3), ……………………………3分由,可得B=.…………………… 6分(2)∵CRB=,∴A∩CRB=((2,3); …………………………………… 10分 又CRA=,所以CRA∪CRB=R.…………………………………… 14分16.解:(1)設(shè),……………………………2分,.……………………………4分的值域?yàn)?……………………………5分(2)設(shè),由得:,即.……7分,即,∴不等式的解集為.……………………………10分(3)方程有解等價(jià)于在的值域內(nèi),∴的取值范圍為.……………14分17. 解:(1)設(shè)價(jià)格函數(shù)是,過點(diǎn)(0,15)(30,30)則∴………………3分 銷售量函數(shù),過點(diǎn)則∴ ……………………………6分則 ………………9分元 ………………11分備注: 不寫總體扣1分.(2)………………13分即前11天甲商店銷售額少,從第12天起甲商店銷售額比乙多. ………………15分18.(1)因?yàn)槭瞧婧瘮?shù),所以=0,即………………………3分(2)由(1)知,設(shè)則……………………6分因?yàn)楹瘮?shù)y=2在R上是增函數(shù)且 ∴>0又>0 ∴>0即∴在上為減函數(shù). ………………………9分(3)因是奇函數(shù),從而不等式: 等價(jià)于,………………………11分因?yàn)闇p函數(shù),由上式推得:.即對(duì)一切有:恒成立. ………………………12分∴即,∴的取值范圍為:.………………………15分19.解:(1) ………2分∴的單調(diào)增區(qū)間為(),(-,0).………………………4分(2)當(dāng);………………………6分當(dāng),不滿足條件;………………………7分當(dāng)不等式不成立. ………………………8分∴的取值范圍為:.………………………9分(3)由于,當(dāng)∈[1,2]時(shí),10 即 ………………………………11分20 即 ………13分30 即時(shí) …………………………………………… 15分綜上可得 ……………………………16分20.解:(1)令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0. ………………2分令x1=x2=-1,有f[(-1)×(-1) ]=f(-1)+f(-1)=f(1)=0,解得f(-1)=0. …………4分(2)令x1=-1,x2=x,有f(-x)=f(-1)+f(x)=f(x),∴f(x)是偶函數(shù). ………………7分 (3)設(shè)x1,x2∈(0,+∞)且x1
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaoyi/241455.html
相關(guān)閱讀: