函數(shù)模型的應(yīng)用實(shí)例

編輯: 逍遙路 關(guān)鍵詞: 高一 來(lái)源: 高中學(xué)習(xí)網(wǎng)


§3.2.2 函數(shù)模型的應(yīng)用實(shí)例(2)

學(xué)習(xí)目標(biāo)
1. 通過(guò)一些實(shí)例,感受一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)以及冪函數(shù)的廣泛應(yīng)用,解決實(shí)際問(wèn)題中建立函數(shù)模型的過(guò)程,從而進(jìn)一步加深對(duì)這些函數(shù)的理解與應(yīng)用;
2. 初步了解對(duì)統(tǒng)計(jì)數(shù)據(jù)表的分析與處理.

學(xué)習(xí)過(guò)程
一、前準(zhǔn)備
(預(yù)習(xí)教材P104~ P106,找出疑惑之處)
閱讀:2003年5月8日,西安交通大學(xué)醫(yī)學(xué)院緊急啟動(dòng)“建立非典流行趨勢(shì)預(yù)測(cè)與控制策略數(shù)學(xué)模型”研究項(xiàng)目,馬知恩教授率領(lǐng)一批專(zhuān)家晝夜攻關(guān),于5月19日初步完成了第一批成果,并制成了要供決策部門(mén)參考的應(yīng)用軟.
這一數(shù)學(xué)模型利用實(shí)際數(shù)據(jù)擬合參數(shù),并對(duì)全國(guó)和北京、西等地的疫情進(jìn)行了計(jì)算仿真,結(jié)果指出,將患者及時(shí)隔離對(duì)于抗擊非典至關(guān)重要、分析說(shuō),就全國(guó)而論,菲非典病人延遲隔離1天,就醫(yī)人數(shù)將增加1000人左右,推遲兩天約增加工能力100人左右;若外界輸入1000人中包含一個(gè)病人和一個(gè)潛伏病人,將增加患病人數(shù)100人左右;若4月21日以后,政府示采取隔離措施,則高峰期病人人數(shù)將達(dá)60萬(wàn)人.
這項(xiàng)研究在充分考慮傳染病控制中心每日工資發(fā)布的數(shù)據(jù),建立了非典流行趨勢(shì)預(yù)測(cè)動(dòng)力學(xué)模型和優(yōu)化控制模型,并對(duì)非典未的流行趨勢(shì)做了分析預(yù)測(cè).

二、新導(dǎo)學(xué)
※ 典型例題
例1某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元. 銷(xiāo)售單價(jià)與日均銷(xiāo)售量的關(guān)系如下表所示:
銷(xiāo)售單價(jià)/元6789101112
日均銷(xiāo)售量/桶480440400360320280240
請(qǐng)根據(jù)以上數(shù)據(jù)作出分析,這個(gè)經(jīng)營(yíng)部怎樣定價(jià)才能獲得最大利潤(rùn)?

變式:某農(nóng)家旅游公司有客房300間,每間日房租為20元,每天都客滿(mǎn). 公司欲提高檔次,并提高租金,如果每間客房日增加2元,客房出租數(shù)就會(huì)減少10間. 若不考慮其他因素,旅社將房間租金提高到多少時(shí),每天客房的租金總收入最高?

小結(jié):找出實(shí)際問(wèn)題中涉及的函數(shù)變量→根據(jù)變量間的關(guān)系建立函數(shù)模型→利用模型解決實(shí)際問(wèn)題→小結(jié):二次函數(shù)模型。

例2 某地區(qū)不同身高的未成年男性的體重平均值如下表(身高:cm;體重:kg)
身高60708090100110
體重6.137.909.9912.1515.0217.50
身高120130140150160170
體重20.9226.8631.1138.8547.2555.05
(1)根據(jù)表中提供的數(shù)據(jù),建立恰當(dāng)?shù)暮瘮?shù)模型,使它能比較近似地反映這個(gè)地區(qū)未成年男性體重與身高ykg與身高xcm的函數(shù)模型的解析式.
(2)若體重超過(guò)相同身高男性平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個(gè)地區(qū)一名身高為175cm ,體重78kg的在校男生的體重是否正常?

小結(jié):根據(jù)收集到的數(shù)據(jù)的特點(diǎn),通過(guò)建立函數(shù)模型,解決實(shí)際問(wèn)題的基本過(guò)程:收集數(shù)據(jù)→畫(huà)散點(diǎn)圖→選擇函數(shù)模型→求函數(shù)模型→檢驗(yàn)→符合實(shí)際,用函數(shù)模型解釋實(shí)際問(wèn)題;不符合實(shí)際,則重新選擇函數(shù)模型,直到符合實(shí)際為止.
※ 動(dòng)手試試
練1. 某同學(xué)完成一項(xiàng)任務(wù)共花去9個(gè)小時(shí),他記錄的完成工作量的百分?jǐn)?shù)如下:
時(shí)間/小時(shí)123456789
完成
百分?jǐn)?shù)1530456060708090100
(1)如果用 表示h小時(shí)后完成的工作量的百分?jǐn)?shù),請(qǐng)問(wèn) 是多少?求出 的解析式,并畫(huà)出圖象;
(2)如果該同學(xué)在早晨8:00時(shí)開(kāi)始工作,什么時(shí)候他未工作?

練2. 有一批影碟(VCD)原銷(xiāo)售價(jià)為每臺(tái)800元,在甲、乙兩家家電商場(chǎng)均有銷(xiāo)售. 甲商場(chǎng)用如下方法促銷(xiāo):買(mǎi)一臺(tái)單價(jià)為780元,買(mǎi)兩臺(tái)單價(jià)都為760元,依次類(lèi)推,每多買(mǎi)一臺(tái)則所買(mǎi)各臺(tái)單價(jià)均再減少20元,但每臺(tái)售價(jià)不能低于440元;乙商場(chǎng)一律都按原價(jià)的75%銷(xiāo)售. 某單位需購(gòu)買(mǎi)一批此類(lèi)影碟機(jī),問(wèn)去哪家商場(chǎng)購(gòu)買(mǎi)花費(fèi)較低?

三、提升
※ 學(xué)習(xí)小結(jié)
1. 有關(guān)統(tǒng)計(jì)圖表的數(shù)據(jù)分析處理;
2. 實(shí)際問(wèn)題中建立函數(shù)模型的過(guò)程;

※ 知識(shí)拓展
根據(jù)散點(diǎn)圖設(shè)想比較接近的可能的函數(shù)模型:
①一次函數(shù)模型:
②二次函數(shù)模型:
③冪函數(shù)模型:
④指數(shù)函數(shù)模型: ( >0, )
學(xué)習(xí)評(píng)價(jià)
※ 自我評(píng)價(jià) 你完成本節(jié)導(dǎo)學(xué)案的情況為( ).
A. 很好 B. 較好 C. 一般 D. 較差
※ 當(dāng)堂檢測(cè)(時(shí)量:5分鐘 滿(mǎn)分:10分)計(jì)分:
1. 向高為H的圓錐形漏斗內(nèi)注入化學(xué)溶液(漏斗下口暫且關(guān)閉),注入溶液量V與溶液深度h的大概圖象是( ).

2. 某種生物增長(zhǎng)的數(shù)量 與時(shí)間 的關(guān)系如下表:

123...

138...
下面函數(shù)關(guān)系式中,能表達(dá)這種關(guān)系的是( ).
A. B.
C. D.
3. 某企業(yè)近幾年的年產(chǎn)值如下圖:

則年增長(zhǎng)率(增長(zhǎng)率=增長(zhǎng)值/原產(chǎn)值)最高的是( ).
A. 97年 B. 98年 C. 99年 D. 00年
4. 某雜志能以每本1.20的價(jià)格發(fā)行12萬(wàn)本,設(shè)定價(jià)每提高0.1元,發(fā)行量就減少4萬(wàn)本. 則雜志的總銷(xiāo)售收入y萬(wàn)元與其定價(jià)x的函數(shù)關(guān)系是 .
5. 某新型電子產(chǎn)品2002年投產(chǎn),2004年使其成本降低36?. 則平均每年應(yīng)降低成本 %.

后作業(yè)
某地新建一個(gè)服裝廠,從今年7月份開(kāi)始投產(chǎn),并且前4個(gè)月的產(chǎn)量分別為1萬(wàn)、1 .2萬(wàn)、1.3萬(wàn)、1.37萬(wàn). 由于產(chǎn)品質(zhì)量好,服裝款式新穎,因此前幾個(gè)月的產(chǎn)品銷(xiāo)售情況良好. 為了在推銷(xiāo)產(chǎn)品時(shí),接收定單不至于過(guò)多或過(guò)少,需要估測(cè)以后幾個(gè)月的產(chǎn)量,你能解決這一問(wèn)題嗎?




本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/gaoyi/43473.html

相關(guān)閱讀:函數(shù)概念的應(yīng)用