高中一年級數(shù)學(xué)公式??三角函數(shù)

編輯: 逍遙路 關(guān)鍵詞: 高一學(xué)習(xí)指導(dǎo) 來源: 高中學(xué)習(xí)網(wǎng)

數(shù)學(xué)是一種工具學(xué)科,精品小編準(zhǔn)備了高中一年級數(shù)學(xué)公式,具體請看以下內(nèi)容。

兩角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=((1-cosA)/2) sin(A/2)=-((1-cosA)/2)

cos(A/2)=((1+cosA)/2) cos(A/2)=-((1+cosA)/2)

tan(A/2)=((1-cosA)/((1+cosA)) tan(A/2)=-((1-cosA)/((1+cosA))

ctg(A/2)=((1+cosA)/((1-cosA)) ctg(A/2)=-((1+cosA)/((1-cosA))

和差化積

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

某些數(shù)列前n項和

1+2+3+4+5+6+7+8+9++n=n(n+1)/2 1+3+5+7+9+11+13+15++(2n-1)=n2

2+4+6+8+10+12+14++(2n)=n(n+1) 12+22+32+42+52+62+72+82++n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7++n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

弧長公式 l=a*r a是圓心角的弧度數(shù)r 0 扇形面積公式 s=1/2*l*r

乘法與因式分 a2-b2=(a+b)(a-b)

a3+b3=(a+b)(a2-ab+b2)

a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b||a|+|b|

|a-b||a|+|b|

|a|=ab

|a-b||a|-|b| -|a||a|

一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a

根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理

判別式

b2-4ac=0 注:方程有兩個相等的實根

b2-4ac0 注:方程有兩個不等的實根

b2-4ac0 注:方程沒有實根,有共軛復(fù)數(shù)根

降冪公式

(sin^2)x=1-cos2x/2

(cos^2)x=i=cos2x/2

萬能公式

令tan(a/2)=t

sina=2t/(1+t^2)

cosa=(1-t^2)/(1+t^2)

tana=2t/(1-t^2)

公式一:

設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2k)=sin

cos(2k)=cos

tan(2k)=tan

cot(2k)=cot

公式二:

設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的關(guān)系:

sin()=-sin

cos()=-cos

tan()=tan

cot()=cot

公式三:

任意角與 -的三角函數(shù)值之間的關(guān)系:

sin(-)=-sin

cos(-)=cos

tan(-)=-tan

cot(-)=-cot

公式四:

利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:

sin()=sin

cos()=-cos

tan()=-tan

cot()=-cot

公式五:

利用公式一和公式三可以得到2與的三角函數(shù)值之間的關(guān)系:

sin(2)=-sin

cos(2)=cos

tan(2)=-tan

cot(2)=-cot

公式六:

/2及3/2與的三角函數(shù)值之間的關(guān)系:

sin(/2+)=cos

cos(/2+)=-sin

tan(/2+)=-cot

cot(/2+)=-tan

sin(/2-)=cos

cos(/2-)=sin

tan(/2-)=cot

cot(/2-)=tan

(以上kZ)

注意:在做題時,將a看成銳角來做會比較好做。

高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級數(shù)學(xué)公式,希望大家喜歡。


本文來自:逍遙右腦記憶 http://yy-art.cn/gaoyi/567257.html

相關(guān)閱讀:高一化學(xué):知識點氧化還原反應(yīng)