浙江省寧波市高一上學(xué)期期末數(shù)學(xué)試卷 Word版含答案

編輯: 逍遙路 關(guān)鍵詞: 高一 來源: 高中學(xué)習(xí)網(wǎng)


試卷說明:

寧波市學(xué)年第一學(xué)期期末考試高一數(shù)學(xué)試卷說明:本試卷分第Ⅰ卷選擇題和第Ⅱ卷非選擇題兩部分,共150分.考試時間120分鐘.本次考試不得使用計算器.請考生將所有題目都做在答題卷上.1.設(shè)集合,則(A)B) (C) (D)2.的值是A)    。˙)     。–)    。―) 3.函數(shù)是 A)周期為的奇函數(shù)B)周期為的偶函數(shù)C)周期為的奇函數(shù) D)周期為的偶函數(shù)4.下列函數(shù)在區(qū)間是增函數(shù)的是 A) (B) (C) (D)5.設(shè)函數(shù)則的值為(A) B) (C)D)6.已知函數(shù)且在區(qū)間上的最大值和最小值之和為,則的值為 (A)(B)(C)(D)7.定義一種運算,則函數(shù)的值域為(A)(B) (C)(D)8.已知分別是的邊上的中線,且,則(A) (B) (C) (D)9.將函數(shù)的圖像向左平移個單位,所得圖像關(guān)于軸對稱,則的最小值為(A)(B)(C)(D)10.已知函數(shù),其中為實數(shù),若對恒成立,且,則的單調(diào)遞增區(qū)間是(A) (B)(C) (D)11.函數(shù)的定義域是 ▲ . 12.計算: ▲ .13.已知向量滿足,且它們的夾角為,則 ▲ . 14.已知,則 ▲ . 15.函數(shù)的值域為 ▲ . 16.設(shè)是定義在上的奇函數(shù),當(dāng)時,為常數(shù)),則 ▲ . 17.若函數(shù)對于上的任意都有,則實數(shù)的取值范圍是 ▲ . 18.(本小題滿分14分)已知.求和.19.(本小題滿分14分)函數(shù).(I)若是偶函數(shù),求實數(shù)的值;(II)當(dāng)時,求在區(qū)間上的值域.20.(本小題滿分14分)已知點是函數(shù),)一個周期內(nèi)圖象上的兩點,函數(shù)的圖象與軸交于點,滿足.(I)求的表達式; (II)求函數(shù)在區(qū)間內(nèi)的零點.21.(本題15分)已知向量( 為實數(shù))(I) 時,若 ,求 ;(II)若,求的最小值,并求出此時向量在方向上的投影22.(本題15分)已知函數(shù) (I)判斷函數(shù)在的單調(diào)性并用定義證明;(II)令,求在區(qū)間的最大值的表達式   12.   13.    14.15. 16.   17.三、解答題18.(本小題14分)解:由得,所以;            。7分)又,即,得解得:或.(14分)19.(本小題14分)解:(I);4分(II)當(dāng)時,令,(8分)則   值域為 .14分20.(本小題14分)解:(I),,;(3分) 得 ; (6分),, ,得    .(9分)(II),,, 即 , 或 ,得或14分21.(本小題15分)解:(I),, ,(4分) 得 ;(6分)(II)時,,(9分)當(dāng) 時,,(12分)此時,在方向上的投影.(15分)22.(本小題15分)解:(I)在遞增; (證明略).(6分)(II)若,,在遞增,, 若,)在遞減,, (9分)若,則(11分)當(dāng)時,函數(shù)遞增, , 當(dāng)時,函數(shù)遞減,;(13分) ,當(dāng) 時,,當(dāng)時,.綜上:時,,當(dāng)時,.(15分)浙江省寧波市高一上學(xué)期期末數(shù)學(xué)試卷 Word版含答案
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaoyi/943155.html

相關(guān)閱讀:山東省濟寧市高三數(shù)學(xué)一輪復(fù)習(xí)對數(shù)函數(shù)專項訓(xùn)練