高一數(shù)學(xué)暑假作業(yè)精選
下面數(shù)學(xué)網(wǎng)為大家整理了高一數(shù)學(xué)暑假作業(yè)精選,希望大家在空余時(shí)間進(jìn)行復(fù)習(xí)練習(xí)和學(xué)習(xí),供參考。大家暑期快樂哦。
一、選擇題
1.已知函數(shù)f(x)=lg,若f(a)=,則f(-a)等于( )
A. B.-
C.2 D.-2
[答案] B
[解析] f(a)=lg=,f(-a)=lg()-1
=-lg=-.
2.函數(shù)y=ln(1-x)的圖象大致為( )
[答案] C
[解析] 要使函數(shù)y=ln(1-x)有意義,應(yīng)滿足1-x>0,x<1,排除A、B;
又當(dāng)x<0時(shí),-x>0,1-x>1,
y=ln(1-x)>0,排除D,故選C.
3.(·北京理,2)下列函數(shù)中,在區(qū)間(0,+∞)上為增函數(shù)的是( )
A.y= B.y=(x-1)2
C.y=2-x D.y=log0.5(x+1)
[答案] A
[解析] y=在[-1,+∞)上是增函數(shù),
y=在(0,+∞)上為增函數(shù).
4.設(shè)函數(shù)f(x)=,若f(3)=2,f(-2)=0,則b=( )
A.0 B.-1
C.1 D.2
[答案] A
[解析] f(3)=loga4=2,a=2.
f(-2)=4-2a+b=4-4+b=0,b=0.
5.(~學(xué)年度山東濰坊二中高一月考)已知函數(shù)y=log2(1-x)的值域?yàn)?-∞,0),則其定義域是( )
A.(-∞,1) B.(0,)
C.(0,1) D.(1,+∞)
[答案] C
[解析] 函數(shù)y=log2(1-x)的值域?yàn)?-∞,0),
log2(1-x)<0,
0<1-x<1,00,
x2-2x<0,即0log54>log53>0,
1>log54>log53>(log53)2>0,
而log45>1,c>a>b.
3.已知函數(shù)f(x)=,若f(x0)>3,則x0的取值范圍是( )
A.x0>8 B.x0<0或x0>8
C.03,
x0+1>1,即x0>0,無解;
當(dāng)x0>2時(shí),log2x0>3,
x0>23,即x0>8,x0>8.
4.函數(shù)f(x)=ax+loga(2x+1)(a>0且a≠1)在[0,2]上的最大值與最小值之和為a2,則a的值為( )
A. B.5 C. D.4
[答案] A
[解析] 當(dāng)a>1時(shí),ax隨x的增大而增大,
loga(2x+1)隨x的增大而增大,
函數(shù)f(x)在[0,2]上為增函數(shù),
f(x)max=a2+loga5,f(x)min=1,
a2+loga5+1=a2,loga5+1=0,
loga5=-1,a=(不合題意舍去).
當(dāng)0
f(x)max=1,f(x)min=a2+loga5,1+a2+loga5=a2,
loga5=-1,a=.
二、填空題
5.(~度江西南昌市聯(lián)考)定義在R上的偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,且f()=0,則滿足f(x)<0的集合為____________.
[答案] (0,)(2,+∞)
[解析] 本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用和對(duì)數(shù)不等式的解法.因?yàn)槎x在R上的偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,所以在(-∞,0]上單調(diào)遞增.又f()=0,所以f(-)=0,由f(x)<0可得x<-,或x>,
解得x(0,)(2,+∞).
6.(·福建文,15)函數(shù)f(x)=
的零點(diǎn)個(gè)數(shù)是________.
[答案] 2
[解析] 當(dāng)x≤2,令x2-2=0,得x=-;
當(dāng)x>0時(shí),令2x-6+lnx=0,
即lnx=6-2x,
在同一坐標(biāo)系中,畫出函數(shù)y=6-2x與y=lnx的圖象如圖所示.
由圖象可知,當(dāng)x>0時(shí),函數(shù)y=6-2x與y=lnx的圖象只有一個(gè)交點(diǎn),即函數(shù)f(x)有一個(gè)零點(diǎn).
綜上可知,函數(shù)f(x)有2個(gè)零點(diǎn).
三、解答題
7.已知函數(shù)f(x)=lg(4-x2).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并證明.
[解析] (1)要使函數(shù)f(x)有意義,應(yīng)滿足4-x2>0,x2>4,-20,且a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求m的值;
(2)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性.
[解析] (1)f(x)=loga(a>0,且a≠1)的圖象關(guān)于原點(diǎn)對(duì)稱,
f(x)為奇函數(shù).f(-x)=-f(x).
loga=-loga=loga,
=,
1-m2x2=1-x2,m2=1,
m=1或m=-1.
當(dāng)m=1時(shí),不滿足題意,舍去,故m=-1.
(2)f(x)=loga=loga.
設(shè)x1,x2(1,+∞),且x10,
x1x2-x1+x2-1>x1x2-x2+x1-1,
又x1,x2(1,+∞),
(x1+1)(x2-1)=x1x2-x1+x2-1>0,
(x2+1)(x1-1)=x1x2-x2+x1-1>0,
>1.
當(dāng)01時(shí),loga>0,
即f(x1)>f(x2),
故函數(shù)f(x)在(1,+∞)上是減函數(shù).
綜上可知,當(dāng)a>1時(shí), f(x)在(1,+∞)上為減函數(shù);
當(dāng)0f(1)=-2,
即x<1時(shí), f(x)的值域是(-2,+∞).
當(dāng)x≥1時(shí), f(x)=logx是減函數(shù),
所以f(x)≤f(1)=0,
即x≥1, f(x)的值域是(-∞,0].
于是函數(shù)f(x)的值域是(-∞,0](-2,+∞)=R.
(2)若函數(shù)f(x)是(-∞,+∞)上的減函數(shù),
則下列三個(gè)條件同時(shí)成立:
當(dāng)x<1時(shí), f(x)=x2-(4a+1)x-8a+4是減函數(shù),
于是≥1,則a≥;
當(dāng)x≥1時(shí), f(x)=logax是減函數(shù),則0
以上就是高一數(shù)學(xué)暑假作業(yè)精選,希望能幫助到大家。
本文來自:逍遙右腦記憶 http://yy-art.cn/gaoyi/978689.html
相關(guān)閱讀:2019高一數(shù)學(xué)必修四期末測(cè)試題[1]