高中數(shù)學:三角函數(shù)誘導公式_高中數(shù)學公式

編輯: 逍遙路 關鍵詞: 高中數(shù)學 來源: 高中學習網(wǎng)


編者按:小編為大家收集了“高中數(shù)學:三角函數(shù)誘導公式”,供大家參考,希望對大家有所幫助!

所謂三角函數(shù)誘導公式,就是將角n·(π/2)±α的三角函數(shù)轉(zhuǎn)化為角α的三角函數(shù)。

公式一:設α為任意角,終邊相同的角的同一三角函數(shù)的值相等:

sin(2kπ+α)=sinα k∈z

cos(2kπ+α)=cosα k∈z

tan(2kπ+α)=tanα k∈z

cot(2kπ+α)=cotα k∈z

公式二:設α為任意角,π+α的三角函數(shù)值與α的三角函數(shù)值之間的關系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α與 -α的三角函數(shù)值之間的關系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α與α的三角函數(shù)值之間的關系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α與α的三角函數(shù)值之間的關系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α與α的三角函數(shù)值之間的關系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

推算公式:3π/2±α與α的三角函數(shù)值之間的關系:

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

誘導公式記憶口訣:“奇變偶不變,符號看象限”。

“奇、偶”指的是π/2的倍數(shù)的奇偶,“變與不變”指的是三角函數(shù)的名稱的變化:“變”是指正弦變余弦,正切變余切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

符號判斷口訣:

“一全正;二正弦;三兩切;四余弦”。這十二字口訣的意思就是說: 第一象限內(nèi)任何一個角的四種三角函數(shù)值都是“+”; 第二象限內(nèi)只有正弦是“+”,其余全部是“-”; 第三象限內(nèi)只有正切和余切是“+”,其余全部是“-”; 第四象限內(nèi)只有余弦是“+”,其余全部是“-”。

“ASCT”反Z。意即為“all(全部)”、“sin”、“cos”、“tan”按照將字母Z反過來寫所占的象限對應的三角函數(shù)為正值。

以上就是為大家提供的“高中數(shù)學:三角函數(shù)誘導公式”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。


本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/105520.html

相關閱讀:“負數(shù)”是數(shù)嗎?