因?yàn)楦呖祭砜茢?shù)學(xué)比高考文科數(shù)學(xué)要難一些,所以高考理科數(shù)學(xué)需要考生大量的做題總結(jié)經(jīng)驗(yàn),下面是小編整理的高考理科數(shù)學(xué)必考題型的答題方法和技巧,希望對(duì)考生復(fù)習(xí)有所幫助。
高考理科數(shù)學(xué)必考題型答題技巧一、三角函數(shù)題
注意歸一公式、誘導(dǎo)公式的正確性(轉(zhuǎn)化成同名同角三角函數(shù)時(shí),套用歸一公式、誘導(dǎo)公式(奇變、偶不變;符號(hào)看象限)時(shí),很容易因?yàn)榇中,?dǎo)致錯(cuò)誤!一著不慎,滿盤皆輸!)。
二、數(shù)列題
1.證明一個(gè)數(shù)列是等差(等比)數(shù)列時(shí),最后下結(jié)論時(shí)要寫上以誰為首項(xiàng),誰為公差(公比)的等差(等比)數(shù)列。
2.最后一問證明不等式成立時(shí),如果一端是常數(shù),另一端是含有n的式子時(shí),一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時(shí),當(dāng)n=k+1時(shí),一定利用上n=k時(shí)的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點(diǎn)是有難度的。簡(jiǎn)潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號(hào),得到目標(biāo)式子,下結(jié)論時(shí)一定寫上綜上:由①②得證。
3.證明不等式時(shí),有時(shí)構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡(jiǎn)單(所以要有構(gòu)造函數(shù)的意識(shí))。
三、立體幾何題
1.證明線面位置關(guān)系,一般不需要去建系,更簡(jiǎn)單。
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時(shí),最好要建系。
3.注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系(符號(hào)問題、鈍角、銳角問題)。
四、概率問題
1.搞清隨機(jī)試驗(yàn)包含的所有基本事件和所求事件包含的基本事件的個(gè)數(shù)。
2.搞清是什么概率模型,套用哪個(gè)公式。
3.記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式。
4.求概率時(shí),正難則反(根據(jù)p1+p2+...+pn=1)。
5.注意計(jì)數(shù)時(shí)利用列舉、樹圖等基本方法。
6.注意放回抽樣,不放回抽樣。
7.注意“零散的”的知識(shí)點(diǎn)(莖葉圖,頻率分布直方圖、分層抽樣等)在大題中的滲透。 8、注意條件概率公式。
9、注意平均分組、不完全平均分組問題。
五、圓錐曲線問題
1、注意求軌跡方程時(shí),從三種曲線(橢圓、雙曲線、拋物線)著想,橢圓考得最多,方法上有直接法、定義法、交軌法、參數(shù)法、待定系數(shù)法。
2、注意直線的設(shè)法(法1分有斜率,沒斜率;法2設(shè)x=my+b(斜率不為零時(shí)),知道弦中點(diǎn)時(shí),往往用點(diǎn)差法);注意判別式;注意韋達(dá)定理;注意弦長(zhǎng)公式;注意自變量的取值范圍等。
六、導(dǎo)數(shù)、極值、最值、不等式恒成立(或逆用求參)問題
1.先求函數(shù)的定義域,正確求出導(dǎo)數(shù),特別是復(fù)合函數(shù)的導(dǎo)數(shù),單調(diào)區(qū)間一般不能并,用“和”或“,”隔開(知函數(shù)求單調(diào)區(qū)間,不帶等號(hào);知單調(diào)性,求參數(shù)范圍,帶等號(hào))。
2.注意最后一問有應(yīng)用前面結(jié)論的意識(shí)。
3.注意分論討論的思想。
4.不等式問題有構(gòu)造函數(shù)的意識(shí)。
5.恒成立問題(分離常數(shù)法、利用函數(shù)圖像與根的分布法、求函數(shù)最值法);
高考理科數(shù)學(xué)答題方法1.利用題目中的已知條件和選項(xiàng)的特殊性。對(duì)于具有一般性的數(shù)學(xué)問題,我們?cè)诮忸}過程中,可以將問題特殊化,利用問題在某一特殊情況下不真,則它在一般情況下不真這一原理,達(dá)到去偽存真的目的。
2.利用圖形的特殊性(平面解析、立體幾何常用)將所要研究的問題向極端狀態(tài)進(jìn)行分析,使因果關(guān)系變得更加明顯,從而達(dá)到迅速解決問題的目的。
3.利用選項(xiàng)比較快速答題。利用已知條件和選擇支所提供的信息,從四個(gè)選項(xiàng)中剔除掉三個(gè)錯(cuò)誤的答案,從而達(dá)到正確選擇的目的。
4.數(shù)形結(jié)合思維。這種思維是大家最為熟悉的,很多題一畫圖就一目了然,或者馬上就有解題思路和方向。但是由于是選擇題,建議同學(xué)們盡量選擇符合題目條件的特殊圖形,便于簡(jiǎn)化計(jì)算。具體案例就不再枚舉。
5.選項(xiàng)代入逆推思想。這類題型通常選項(xiàng)是固定數(shù)值。由于是選擇題,從條件計(jì)算出結(jié)論,就是小題大做,無論是時(shí)間和精力方面的投入都十分吃虧,不妨將答案一一代入,即可得出正確結(jié)論。
6.選項(xiàng)代入逆推思想。這類題型通常選項(xiàng)是固定數(shù)值。由于是選擇題,從條件計(jì)算出結(jié)論,就是小題大做,無論是時(shí)間和精力方面的投入都十分吃虧,不妨將答案一一代入,即可得出正確結(jié)論。
7.歸納推導(dǎo)思維。對(duì)題設(shè)和選擇支的特點(diǎn)進(jìn)行分析,發(fā)現(xiàn)規(guī)律,歸納得出正確判斷的方法。
高考理科數(shù)學(xué)學(xué)習(xí)方法1.理科生不能一味做難題、綜合題,好高騖遠(yuǎn),不但會(huì)耗費(fèi)大量時(shí)間,而且遇到不會(huì)做題多了就會(huì)降低你的自信心,養(yǎng)成容易忽略一些看似簡(jiǎn)單的基礎(chǔ)問題和細(xì)節(jié)問題,在考試時(shí)丟了不丟的分,造成難以彌補(bǔ)的損失。因此,練習(xí)時(shí)應(yīng)從自已的實(shí)際情況出發(fā),循序漸進(jìn)。應(yīng)以基礎(chǔ)題、中檔題為主,適當(dāng)做一些綜合性較強(qiáng)的題以提高能力和思維品質(zhì)。
2.在可能的情況下多練習(xí)一些是好的,但貴在精。做題時(shí)的思考和總結(jié)非常重要,每做一道題都要回想一下自己的解題思路,看看能不能一題多解,舉一反三,并注意合理運(yùn)算,優(yōu)化解題過程。重點(diǎn)問題要舍得劃費(fèi)時(shí)間,多做一些題。在復(fù)習(xí)過程中也要不斷做一些應(yīng)用題,來提高閱讀理解能力和解決實(shí)際問題的能力,這是高考改革的方向之一。
3.有的理科生重視解題的數(shù)量而輕視質(zhì)量,表現(xiàn)在做題后不問對(duì)錯(cuò),這是不對(duì)的,錯(cuò)了不僅要改,還要記下來,分析造成錯(cuò)誤的原因和啟示,尤其是考試試卷更要注意。只有經(jīng)過不斷的改正錯(cuò)誤,日積月累,才能提高。
4.注意總結(jié),不僅包括題型、方法、規(guī)律的總結(jié),還要掌握一些基本題。
本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/1184563.html
相關(guān)閱讀:高考文科數(shù)學(xué)必背公式有哪些