高中數(shù)學(xué)有關(guān)平面向量的公式_高中數(shù)學(xué)公式

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


定比分點

定比分點公式(向量P1P=λ•向量PP2)

設(shè)P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個實數(shù) λ,使 向量P1P=λ•向量PP2,λ叫做點P分有向線段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),則有

OP=(OP1+λOP2)(1+λ);(定比分點向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分點坐標(biāo)公式)

我們把上面的式子叫做有向線段P1P2的定比分點公式

三點共線定理

若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線

三角形重心判斷式

在△ABC中,若GA +GB +GC=O,則G為△ABC的重心

[編輯本段]向量共線的重要條件

若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。

a//b的重要條件是 xy'-x'y=0。

零向量0平行于任何向量。

[編輯本段]向量垂直的充要條件

a⊥b的充要條件是 a•b=0。

a⊥b的充要條件是 xx'+yy'=0。

零向量0垂直于任何向量.

設(shè)a=(x,y),b=(x',y')。

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結(jié)合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

AB-AC=CB. 即“共同起點,指向被減”

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

4、數(shù)乘向量

實數(shù)λ和向量a的乘積是一個向量,記作λa,且?λa?=?λ?•?a?。

當(dāng)λ>0時,λa與a同方向;

當(dāng)λ<0時,λa與a反方向;

當(dāng)λ=0時,λa=0,方向任意。

當(dāng)a=0時,對于任意實數(shù)λ,都有λa=0。

注:按定義知,如果λa=0,那么λ=0或a=0。

實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。


本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/153827.html

相關(guān)閱讀:高一數(shù)學(xué)學(xué)習(xí):學(xué)習(xí)數(shù)學(xué)的幾點小技巧三