2012高考數(shù)學(xué)輔導(dǎo):誘導(dǎo)公式記憶口訣

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來(lái)源: 高中學(xué)習(xí)網(wǎng)
對(duì)于π/2*k ±α(k∈Z)的三角函數(shù)值,

①當(dāng)k是偶數(shù)時(shí),得到α的同名函數(shù)值,即函數(shù)名不改變;

②當(dāng)k是奇數(shù)時(shí),得到α相應(yīng)的余函數(shù)值,即sin→cos;cos→sin;tan→cot,cot→tan.

(奇變偶不變)

然后在前面加上把α看成銳角時(shí)原函數(shù)值的符號(hào)。

(符號(hào)看象限)

例如:

sin(2π-α)=sin(4·π/2-α),k=4為偶數(shù),所以取sinα。

當(dāng)α是銳角時(shí),2π-α∈(270°,360°),sin(2π-α)<0,符號(hào)為“-”。

所以sin(2π-α)=-sinα

上述的記憶口訣是:

奇變偶不變,符號(hào)看象限。

公式右邊的符號(hào)為把α視為銳角時(shí),角k·360°+α(k∈Z),-α、180°±α,360°-α

所在象限的原三角函數(shù)值的符號(hào)可記憶

水平誘導(dǎo)名不變;符號(hào)看象限。

#

各種三角函數(shù)在四個(gè)象限的符號(hào)如何判斷,也可以記住口訣“一全正;二正弦(余割);三兩切;四余弦(正割)”.

這十二字口訣的意思就是說(shuō):

第一象限內(nèi)任何一個(gè)角的四種三角函數(shù)值都是“+”;

第二象限內(nèi)只有正弦是“+”,其余全部是“-”;

第三象限內(nèi)切函數(shù)是“+”,弦函數(shù)是“-”;

第四象限內(nèi)只有余弦是“+”,其余全部是“-”.

上述記憶口訣,一全正,二正弦,三內(nèi)切,四余弦

#

還有一種按照函數(shù)類(lèi)型分象限定正負(fù):

函數(shù)類(lèi)型 第一象限 第二象限 第三象限 第四象限

正弦 ...........+............+............—............—........

余弦 ...........+............—............—............+........

正切 ...........+............—............+............—........

余切 ...........+............—............+............—........

同角三角函數(shù)基本關(guān)系

同角三角函數(shù)的基本關(guān)系式

倒數(shù)關(guān)系:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關(guān)系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關(guān)系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函數(shù)關(guān)系六角形記憶法

六角形記憶法:(參看圖片或參考資料鏈接)

構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

(1)倒數(shù)關(guān)系:對(duì)角線(xiàn)上兩個(gè)函數(shù)互為倒數(shù);

(2)商數(shù)關(guān)系:六邊形任意一頂點(diǎn)上的函數(shù)值等于與它相鄰的兩個(gè)頂點(diǎn)上函數(shù)值的乘積。

(主要是兩條虛線(xiàn)兩端的三角函數(shù)值的乘積)。由此,可得商數(shù)關(guān)系式。

(3)平方關(guān)系:在帶有陰影線(xiàn)的三角形中,上面兩個(gè)頂點(diǎn)上的三角函數(shù)值的平方和等于下面頂點(diǎn)上的三角函數(shù)值的平方。

兩角和差公式

兩角和與差的三角函數(shù)公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升冪縮角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降冪擴(kuò)角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

萬(wàn)能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

萬(wàn)能公式推導(dǎo)

附推導(dǎo):

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,

(因?yàn)閏os^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推導(dǎo)余弦的萬(wàn)能公式。正切的萬(wàn)能公式可通過(guò)正弦比余弦得到。

三倍角公式

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)]

三倍角公式推導(dǎo)

附推導(dǎo):

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

三倍角公式聯(lián)想記憶

★記憶方法:諧音、聯(lián)想

正弦三倍角:3元 減 4元3角(欠債了(被減成負(fù)數(shù)),所以要“掙錢(qián)”(音似“正弦”))

余弦三倍角:4元3角 減 3元(減完之后還有“余”)

☆☆注意函數(shù)名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。

★另外的記憶方法:

正弦三倍角: 山無(wú)司令 (諧音為 三無(wú)四立) 三指的是"3倍"sinα, 無(wú)指的是減號(hào), 四指的是"4倍", 立指的是sinα立方

余弦三倍角: 司令無(wú)山 與上同理

和差化積公式

三角函數(shù)的和差化積公式

sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]

積化和差公式

三角函數(shù)的積化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]

和差化積公式推導(dǎo)

附推導(dǎo):

首先,我們知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb

我們把兩式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把兩式相減,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同樣的,我們還知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把兩式相加,我們就可以得到cos(a+b)+cos(a-b)=2cosa*cosb

所以我們就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,兩式相減我們就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

這樣,我們就得到了積化和差的四個(gè)公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

有了積化和差的四個(gè)公式以后,我們只需一個(gè)變形,就可以得到和差化積的四個(gè)公式。

我們把上述四個(gè)公式中的a+b設(shè)為x,a-b設(shè)為y,那么a=(x+y)/2,b=(x-y)/2

把a(bǔ),b分別用x,y表示就可以得到和差化積的四個(gè)公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

沖刺:跳出單選陷阱題

更多內(nèi)容進(jìn)入:

試頻道


本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaozhong/156723.html

相關(guān)閱讀:人教版高一數(shù)學(xué)知識(shí)點(diǎn)歸納