一、選擇題
1.(2010安徽文)經(jīng)過點(diǎn)(1,0),且與直線平行的直線方程是( ).
A. B. C. D.
考查目的:考查兩條平行直線斜率的關(guān)系、直線的方程和待定系數(shù)法.
答案:A.
解析:設(shè)所求直線的方程為.∵所求直線經(jīng)過點(diǎn)(1,0),∴,∴所求直線的方程為.也可逐個(gè)判斷四個(gè)選項(xiàng)所表示的直線是否都經(jīng)過點(diǎn)(1,0)且與直線平行.
2.下列說法正確的是( ).
A.經(jīng)過定點(diǎn)(,)的直線都可以用方程表示;
B.經(jīng)過不同兩點(diǎn),的直線都可以用方程表示;
C.經(jīng)過定點(diǎn)(0,)且斜率存在的直線都可以用方程表示;
D.不經(jīng)過原點(diǎn)的直線都可以用方程表示.
考查目的:考查直線方程的幾種形式及其適用情形.
答案:C.
解析:A中的點(diǎn)斜式方程不能表示斜率不存在時(shí)的直線;B中的兩點(diǎn)式方程不能表示與坐標(biāo)軸平行時(shí)的直線,即只能表示且的直線;D中的截距式方程只能表示與坐標(biāo)軸都相交時(shí)的直線,而不能表示與坐標(biāo)軸垂直時(shí)的直線方程.四個(gè)選項(xiàng)中只有C正確.
3.(2009上海文)已知直線,平行,則的值是( ).
A.1或3 B.1或5 C.3或5 D.1或2
考查目的:考查兩條平行直線方程的基本特點(diǎn)和分類討論思想.
答案:C.
解析:當(dāng)時(shí),,都與軸垂直,此時(shí)∥;當(dāng)時(shí),要使直線∥,必須且,解得.
二、填空題
4.經(jīng)過點(diǎn)(0,1),(2,0)的直線方程為 .
考查目的:考查直線方程的幾種常見形式及其求法.
答案:.
解析:根據(jù)條件可寫出直線的截距式方程為,整理得.本題也可用待定系數(shù)法求解.
5.經(jīng)過點(diǎn)A(1,2),且在兩條坐標(biāo)軸上的截距相等的直線共有 條.
考查目的:考查直線截距的概念,和直線方程幾種常見的形式及其求法.
答案:2.
解析:若直線經(jīng)過原點(diǎn),易求直線方程為.若直線不經(jīng)過原點(diǎn),可設(shè)所求的直線方程為,將點(diǎn)A的坐標(biāo)(1,2)代入得,∴直線也符合題意.即符合題意的直線共有2條.
6.(2011安徽理)在平面直角坐標(biāo)系中,如果與都是整數(shù),則稱點(diǎn)(,)為整點(diǎn).下列命題中正確的是_____________(寫出所有正確命題的編號(hào)).
①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn);
②如果與都是無理數(shù),則直線不經(jīng)過任何整點(diǎn);
③直線經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)經(jīng)過兩個(gè)不同的整點(diǎn);
④直線經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)與都是有理數(shù);
⑤存在恰好經(jīng)過一個(gè)整點(diǎn)的直線.
考查目的:考查對(duì)直線方程幾種常見形式的理解、數(shù)形結(jié)合思想和實(shí)數(shù)的知識(shí).
答案:①③⑤.
解析:①例如,②如過整點(diǎn)(1,0),③設(shè)()是過原點(diǎn)的直線.若此直線經(jīng)過兩個(gè)整點(diǎn)(,),(,),則,,兩式相減得,則點(diǎn)也在直線上.通過這種方法可以得到直線經(jīng)過無窮多個(gè)整點(diǎn).通過上下平移得,對(duì)于也成立,所以③正確;④如不經(jīng)過無窮多個(gè)整點(diǎn);⑤如直線,只經(jīng)過(0,0).
三、解答題
7.已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:
⑴BC邊上的高所在的直線方程;
⑵AB邊的垂直平分線的方程.
考查目的:考查能夠靈活利用直線方程特點(diǎn)求滿足題意的直線方程.
答案:⑴;⑵.
解析:⑴∵,∴BC邊上的高AD所在的直線的斜率,∴AD所在的直線方程為,即.
⑵∵AB的中點(diǎn)為(3,1),,∴AB邊的垂直平分線的斜率為,∴AB邊的垂直平分線的方程為,整理得.
8.已知直線.
⑴系數(shù)為什么值時(shí),方程表示通過原點(diǎn)的直線?
⑵系數(shù)滿足什么關(guān)系時(shí),直線與兩條坐標(biāo)軸都相交?
⑶系數(shù)滿足什么條件時(shí),直線只與軸相交?
⑷系數(shù)滿足什么條件時(shí),方程表示軸?
⑸設(shè)為直線上一點(diǎn),證明:這條直線的方程可以寫成
.
考查目的:考查對(duì)直線的一般式方程的理解和分類討論思想、數(shù)形結(jié)合思想.
答案:⑴,不同時(shí)為零;⑵應(yīng)均不為零;⑶且;⑷;⑸略.
解析:⑴將(0,0)代入中得,不同時(shí)為零;
⑵直線與坐標(biāo)軸都相交,說明直線的橫、縱截距都存在.令,則;令,則.依題意即,均存在,∴應(yīng)均不為零;
⑶直線只與軸相交,即只與軸有一個(gè)公共點(diǎn),與軸沒有公共點(diǎn),∴直線的方程只能化為的形式,∴,,;
⑷∵軸的方程為,∴要使方程只表示軸,則必須;
⑸∵在直線上,∴滿足方程,即
,∴,∴可化為,即.
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/168909.html
相關(guān)閱讀:高中數(shù)學(xué)解題:解析幾何中求參數(shù)取值范圍的方法