定比分點
定比分點公式(向量P1P=λ•向量PP2)
設P1、P2是直線上的兩點,P是l上不同于P1、P2的任意一點。則存在一個實數(shù) λ,使 向量P1P=λ•向量PP2,λ叫做點P分有向線段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),則有
OP=(OP1+λOP2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點坐標公式)
我們把上面的式子叫做有向線段P1P2的定比分點公式
三點共線定理
若OC=λOA +μOB ,且λ+μ=1 ,則A、B、C三點共線
三角形重心判斷式
在△ABC中,若GA +GB +GC=O,則G為△ABC的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數(shù)λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行于任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a•b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直于任何向量.
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0
AB-AC=CB. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數(shù)乘向量
實數(shù)λ和向量a的乘積是一個向量,記作λa,且?λa?=?λ?•?a?。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對于任意實數(shù)λ,都有λa=0。
注:按定義知,如果λa=0,那么λ=0或a=0。
實數(shù)λ叫做向量a的系數(shù),乘數(shù)向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當?λ?>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的?λ?倍;
當?λ?<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的?λ?倍。
數(shù)與向量的乘法滿足下面的運算律
本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/193207.html
相關閱讀:美國高中數(shù)學都學什么?