有一次,小李把青菜、蘿卜、辣椒三種蔬菜作為一組,它們的單價(jià)分別為a元、b元和c元,且a+b+c=1(顯然,a、b、c都是小于1的正數(shù))。要買這組蔬菜的顧客,付1元錢(qián)可以買3斤(青菜、蘿卜、辣椒各1斤),2元錢(qián)6斤,3元錢(qián)9斤,等等。但是有一些顧客并不要這一方便,他們雖然每次掏出的是3元錢(qián),買的是這三種菜,但要的不是已經(jīng)搭配、包裝好的菜,而是要求買1元錢(qián)青菜,1元錢(qián)蘿卜,1元錢(qián)辣椒。這樣,小李就得給他們稱1/a斤青菜,l/b斤蘿卜和1/c斤辣椒。好在蔬菜組有電子秤。這種要求倒也難不倒小李。不過(guò)這種顧客多遇上幾個(gè)之后,小李發(fā)現(xiàn)了一個(gè)問(wèn)題,即他們用3元錢(qián)買走的三種蔬菜的總重量總是不少于9斤!這是什么道理呢?小李一時(shí)想不通。你能對(duì)這一現(xiàn)象作出解釋嗎?
由于青菜、蘿卜和辣椒的單價(jià)之和為1元,即a+b+c=l,且a、b.c均為小于1的正數(shù)。我們的問(wèn)題就是在這種條件下解釋為什么
。
應(yīng)用分式、不等式和配方等有關(guān)知識(shí),我們不難證明上述不等式。證明過(guò)程如下:
移項(xiàng)即得 。
這就是為什么那些顧客買走三種蔬菜的總重量總不少于9斤的數(shù)學(xué)道理。
本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/193952.html
相關(guān)閱讀:《4.1 圓的方程》測(cè)試題