編者按:小編為大家收集了“高一數(shù)學(xué)知識(shí)要點(diǎn)與公式總結(jié)”,供大家參考,希望對(duì)大家有所幫助!
一、集合與簡易邏輯:
1)、 理解集合中的有關(guān)概念 (1)集合中元素的特征: 確定性 , 互異性 , 無序性 。
(2)集合與元素的關(guān)系用符號(hào) , 表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集 ;正整數(shù)集 、 ;整數(shù)集 ;有理數(shù)集 、實(shí)數(shù)集 。
(4)集合的表示法: 列舉法 , 描述法 , 韋恩圖 。
(5)空集是指不含任何元素的集合。空集是任何集合的子集,是任何非空集合的真子集。
2)、 集合中元素的個(gè)數(shù)的計(jì)算: (1)若集合 中有 n個(gè)元素,則集合 的所有不同的子集個(gè)數(shù)為_________,所有真子集的個(gè)數(shù)是__________,所有非空真子集的個(gè)數(shù)是 。
3)、 若 ; 則 是 的充分非必要條件 ;
若 ; 則 是 的必要非充分條件 ;
若 ; 則 是 的充要條件 ;
若 ; 則 是 的既非充分又非必要條件 ;
4)、 原命題與逆否命題,否命題與逆命題具有相同的 ;
5)、 反證法:當(dāng)證明“若 ,則 ”感到困難時(shí),改證它的等價(jià)命題“若 則 ”成立,
步驟:1、假設(shè)結(jié)論反面成立;2、從這個(gè)假設(shè)出發(fā),推理論證,得出矛盾;3、由矛盾判斷假設(shè)不成立,從而肯定結(jié)論正確。
矛盾的來源:1、與原命題的條件矛盾;2、導(dǎo)出與假設(shè)相矛盾的命題;3、導(dǎo)出一個(gè)恒假命題。
適用與待證命題的結(jié)論涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼時(shí)。
正面詞語 等于 大于 小于 是 都是 至多有一個(gè)
否定
正面詞語 至少有一個(gè) 任意的 所有的 至多有n個(gè) 任意兩個(gè)
否定
二、函數(shù)
1)、映射與函數(shù):
(1)映射的概念:
(2)一一映射:
(3)函數(shù)的概念:
2)、函數(shù)的三要素: , , 。
(1)函數(shù)解析式的求法: ①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:
(2)函數(shù)定義域的求法: 含參問題的定義域要分類討論; 對(duì)于實(shí)際問題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根據(jù)實(shí)際意義來確定。
(3)函數(shù)值域的求法: ①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;②逆求法(反求法):通過反解,用y來表示x,再由x的取值范圍,通過解不等式,得出y的取值范圍;④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來求值域;⑥基本不等式法:利用平均值不等式公式來求值域;⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。
3)、函數(shù)的性質(zhì): 函數(shù)的單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較) 導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù)) 復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比較f(x) 與f(-x)的關(guān)系。f(x) -f(-x)=0 f(x) =f(-x) f(x)為偶函數(shù); f(x)+f(-x)=0 f(x) =-f(-x) f(x)為奇函數(shù)。
判別方法:定義法, 圖像法 ,復(fù)合函數(shù)法 應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
4)、圖形變換:函數(shù)圖像變換:(重點(diǎn))要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。
常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)
平移變換 y=f(x)→y=f(x+a),y=f(x)+b
注意:(?)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過 平移得到函數(shù)y=f(2x+4)的圖象。
(?)會(huì)結(jié)合向量的平移,理解按照向量 (m,n)平移的意義。
對(duì)稱變換 y=f(x)→y=f(-x),關(guān)于y軸對(duì)稱
y=f(x)→y=-f(x) ,關(guān)于x軸對(duì)稱
y=f(x)→y=fx,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對(duì)稱
y=f(x)→y=f(x)把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對(duì)稱。(注意:它是一個(gè)偶函數(shù))
伸縮變換:y=f(x)→y=f(ωx),
y=f(x)→y=Af(ωx+φ)具體參照三角函數(shù)的圖象變換。
5)、反函數(shù):
(1)定義:
(2)函數(shù)存在反函數(shù)的條件: ;
(3)互為反函數(shù)的定義域與值域的關(guān)系: ;
(4)求反函數(shù)的步驟:①將 看成關(guān)于 的方程,解出 ,若有兩解,要注意解的選擇;②將 互換,得 ;③寫出反函數(shù)的定義域(即 的值域)。
(5)互為反函數(shù)的圖象間的關(guān)系:
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
三、數(shù)列
本章是高考命題的主體內(nèi)容之一,應(yīng)切實(shí)進(jìn)行全面、深入地復(fù)習(xí),并在此基礎(chǔ)上,突出解決下述幾個(gè)問題:(1)等差、等比數(shù)列的證明須用定義證明,值得注意的是,若給出一個(gè)數(shù)列的前 項(xiàng)和 ,則其通項(xiàng)為 若 滿足 則通項(xiàng)公式可寫成 .(2)數(shù)列計(jì)算是本章的中心內(nèi)容,利用等差數(shù)列和等比數(shù)列的通項(xiàng)公式、前 項(xiàng)和公式及其性質(zhì)熟練地進(jìn)行計(jì)算,是高考命題重點(diǎn)考查的內(nèi)容.(3)解答有關(guān)數(shù)列問題時(shí),經(jīng)常要運(yùn)用各種數(shù)學(xué)思想.善于使用各種數(shù)學(xué)思想解答數(shù)列題,是我們復(fù)習(xí)應(yīng)達(dá)到的目標(biāo). ①函數(shù)思想:等差等比數(shù)列的通項(xiàng)公式求和公式都可以看作是 的函數(shù),所以等差等比數(shù)列的某些問題可以化為函數(shù)問題求解.
②分類討論思想:用等比數(shù)列求和公式應(yīng)分為 及 ;已知 求 時(shí),也要進(jìn)行分類;
③整體思想:在解數(shù)列問題時(shí),應(yīng)注意擺脫呆板使用公式求解的思維定勢(shì),運(yùn)用整
體思想求解.
(4)在解答有關(guān)的數(shù)列應(yīng)用題時(shí),要認(rèn)真地進(jìn)行分析,將實(shí)際問題抽象化,轉(zhuǎn)化為數(shù)學(xué)問題,再利用有關(guān)數(shù)列知識(shí)和方法來解決.解答此類應(yīng)用題是數(shù)學(xué)能力的綜合運(yùn)用,決不是簡單地模仿和套用所能完成的.特別注意與年份有關(guān)的等比數(shù)列的第幾項(xiàng)不要弄錯(cuò).
1)、基本概念:
1、 數(shù)列的定義及表示方法:
2、 數(shù)列的項(xiàng)與項(xiàng)數(shù):
3、 有窮數(shù)列與無窮數(shù)列:
4、 遞增(減)、擺動(dòng)、循環(huán)數(shù)列:
5、 數(shù)列{an}的通項(xiàng)公式an:
6、 數(shù)列的前n項(xiàng)和公式Sn:
7、 等差數(shù)列、公差d、等差數(shù)列的結(jié)構(gòu):
8、 等比數(shù)列、公比q、等比數(shù)列的結(jié)構(gòu):
2)、基本公式:
9、一般數(shù)列的通項(xiàng)an與前n項(xiàng)和Sn的關(guān)系:an=
10、等差數(shù)列的通項(xiàng)公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項(xiàng)、ak為已知的第k項(xiàng)) 當(dāng)d≠0時(shí),an是關(guān)于n的一次式;當(dāng)d=0時(shí),an是一個(gè)常數(shù)。
11、等差數(shù)列的前n項(xiàng)和公式:Sn= Sn= Sn=
當(dāng)d≠0時(shí),Sn是關(guān)于n的二次式且常數(shù)項(xiàng)為0;當(dāng)d=0時(shí)(a1≠0),Sn=na1是關(guān)于n的正比例式。
12、等比數(shù)列的通項(xiàng)公式: an= a1 qn-1 an= ak qn-k
(其中a1為首項(xiàng)、ak為已知的第k項(xiàng),an≠0)
13、等比數(shù)列的前n項(xiàng)和公式:當(dāng)q=1時(shí),Sn=n a1 (是關(guān)于n的正比例式);
當(dāng)q≠1時(shí),Sn= Sn=
3)、有關(guān)等差、等比數(shù)列的結(jié)論
14、等差數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。
15、等差數(shù)列{an}中,若m+n=p+q,則
16、等比數(shù)列{an}中,若m+n=p+q,則
17、等比數(shù)列{an}的任意連續(xù)m項(xiàng)的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。
18、兩個(gè)等差數(shù)列{an}與{bn}的和差的數(shù)列{an+bn}、{an-bn}仍為等差數(shù)列。
19、兩個(gè)等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列
{an bn}、 、 仍為等比數(shù)列。
20、等差數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列{an}的任意等距離的項(xiàng)構(gòu)成的數(shù)列仍為等比數(shù)列。
22、三個(gè)數(shù)成等差的設(shè)法:a-d,a,a+d;四個(gè)數(shù)成等差的設(shè)法:a-3d,a-d,,a+d,a+3d
23、三個(gè)數(shù)成等比的設(shè)法:a/q,a,aq;
四個(gè)數(shù)成等比的錯(cuò)誤設(shè)法:a/q3,a/q,aq,aq3
24、{an}為等差數(shù)列,則 (c>0)是等比數(shù)列。
25、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c 1) 是等差數(shù)列。
4) 、數(shù)列求和的常用方法:公式法、裂項(xiàng)相消法、錯(cuò)位相減法、倒序相加法等。關(guān)鍵是找數(shù)列的通項(xiàng)結(jié)構(gòu)。
28、分組法求數(shù)列的和:如an=2n+3n
29、錯(cuò)位相減法求和:如an=(2n-1)2n
30、裂項(xiàng)法求和:如an=1/n(n+1)
31、倒序相加法求和:如an=
32、在等差數(shù)列 中,有關(guān)Sn 的最值問題——常用鄰項(xiàng)變號(hào)法求解:
在解含絕對(duì)值的數(shù)列最值問題時(shí),注意轉(zhuǎn)化思想的應(yīng)用。
四、常用的初等函數(shù):
(1)一元二次函數(shù): 一般式: ;對(duì)稱軸方程是 ;頂點(diǎn)為 ;
兩點(diǎn)式: ;對(duì)稱軸方程是 ;與 軸的交點(diǎn)為 ;
頂點(diǎn)式: ;對(duì)稱軸方程是 ;頂點(diǎn)為 ;
①一元二次函數(shù)的單調(diào)性:
②二次函數(shù)求最值問題:首先要采用配方法,
Ⅰ、若頂點(diǎn)的橫坐標(biāo)在給定的區(qū)間上,則 時(shí):在頂點(diǎn)處取得最小值,最大值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得; 時(shí):在頂點(diǎn)處取得最大值,最小值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得;
Ⅱ、若頂點(diǎn)的橫坐標(biāo)不在給定的區(qū)間上,則 時(shí):最小值在距離對(duì)稱軸較近的端點(diǎn)處取得,最大值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得; 時(shí):最大值在距離對(duì)稱軸較近的端點(diǎn)處取得,最小值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得;
有三個(gè)類型題型: (1)頂點(diǎn)固定,區(qū)間也固定。(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。 (3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).
指數(shù)運(yùn)算法則:
指數(shù)函數(shù):y= (a>o,a≠1),圖象恒過點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0
(5)對(duì)數(shù)函數(shù):
指數(shù)運(yùn)算法則:
對(duì)數(shù)函數(shù):y= (a>o,a≠1) 圖象恒過點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a>1和0
注意:(1)比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
五、不等式
1)、不等式的基本性質(zhì):
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。
(2)注意課本上的幾個(gè)性質(zhì),另外需要特別注意: ①若ab>0,則 。即不等式兩邊同號(hào)時(shí),不等式兩邊取倒數(shù),不等號(hào)方向要改變。 ②如果對(duì)不等式兩邊同時(shí)乘以一個(gè)代數(shù)式,要注意它的正負(fù)號(hào),如果正負(fù)號(hào)未定,要注意分類討論。 ③圖象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。 ④中介值法:先把要比較的代數(shù)式與“0”比,與“1”比,然后再比較它們的大小
2)、均值不等式:兩個(gè)數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
基本應(yīng)用:①放縮,變形;②求函數(shù)最值:注意:①一正二定三取等;②積定和小,和定積大。
常用的方法為:拆、湊、平方;
3)、絕對(duì)值不等式: 注意:上述等號(hào)“=”成立的條件;
4)、常用的基本不等式:
5)、證明不等式常用方法:(1)比較法:作差比較:
作差比較的步驟: ⑴作差:對(duì)要比較大小的兩個(gè)數(shù)(或式)作差。 ⑵變形:對(duì)差進(jìn)行因式分解或配方成幾個(gè)數(shù)(或式)的完全平方和。 ⑶判斷差的符號(hào):結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號(hào)。
注意:若兩個(gè)正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。 (2)綜合法:由因?qū)Ч?(3)分析法:執(zhí)果索因;静襟E:要證……只需證……,只需證…… (4)反證法:正難則反。(5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。
放縮法的方法有: ⑴添加或舍去一些項(xiàng), ⑵將分子或分母放大(或縮小) ⑶利用基本不等式, ⑷利用常用結(jié)論:(6)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。(7)構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式;
6)、不等式的解法:
(1)一元一次不等式:
Ⅰ、 :⑴若 ,則 ;⑵若 ,則 ;
Ⅱ、 :⑴若 ,則 ;⑵若 ,則 ;
(2)一元二次不等式: 一元二次不等式二次項(xiàng)系數(shù)小于零的,同解變形為二次項(xiàng)系數(shù)大于零;注:要對(duì) 進(jìn)行討論:
(5)絕對(duì)值不等式:若 ,則 ; ;
注意:(1).幾何意義:
(2)解有關(guān)絕對(duì)值的問題,考慮去絕對(duì)值,去絕對(duì)值的方法有:
⑴對(duì)絕對(duì)值內(nèi)的部分按大于、等于、小于零進(jìn)行討論去絕對(duì)值;
(3).通過兩邊平方去絕對(duì)值;需要注意的是不等號(hào)兩邊為非負(fù)值。
(4).含有多個(gè)絕對(duì)值符號(hào)的不等式可用“按零點(diǎn)分區(qū)間討論”的方法來解。
(6)分式不等式的解法:通解變形為整式不等式;
(7)不等式組的解法:分別求出不等式組中,每個(gè)不等式的解集,然后求其交集,即是這個(gè)不等式組的解集,在求交集中,通常把每個(gè)不等式的解集畫在同一條數(shù)軸上,取它們的公共部分。
(8)解含有參數(shù)的不等式:
解含參數(shù)的不等式時(shí),首先應(yīng)注意考察是否需要進(jìn)行分類討論.如果遇到下述情況則一般需要討論:
①不等式兩端乘除一個(gè)含參數(shù)的式子時(shí),則需討論這個(gè)式子的正、負(fù)、零性.
②在求解過程中,需要使用指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性時(shí),則需對(duì)它們的底數(shù)進(jìn)行討論.
③在解含有字母的一元二次不等式時(shí),需要考慮相應(yīng)的二次函數(shù)的開口方向,對(duì)應(yīng)的一元二次方程根的狀況(有時(shí)要分析△),比較兩個(gè)根的大小,設(shè)根為 (或更多分 、 、 討論。
六 ,三角公式匯總
1)、任意角的三角函數(shù)
在角 的終邊上任取一點(diǎn) ,記: ,
正弦: 余弦:
正切: 余切:
正割: 余割:
注:我們還可以用單位圓中的有向線段表示任意角的三角函數(shù):如圖,與單位圓有關(guān)的有向線段 、 、 分別叫做角 的正弦線、余弦線、正切線。
2)、同角三角函數(shù)的基本關(guān)系式
倒數(shù)關(guān)系: , , 。
商數(shù)關(guān)系: , 。
平方關(guān)系: , , 。
3)、誘導(dǎo)公式
⑴ 、 、 、 、 的三角函數(shù)值,等于 的同名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符號(hào)。(口訣:函數(shù)名不變,符號(hào)看象限)
⑵ 、 、 、 的三角函數(shù)值,等于 的異名函數(shù)值,前面加上一個(gè)把 看成銳角時(shí)原函數(shù)值的符號(hào)。(口訣:函數(shù)名改變,符號(hào)看象限)
4)、和角公式和差角公式
5)、二倍角公式
…
二倍角的余弦公式 有以下常用變形:(規(guī)律:降冪擴(kuò)角,升冪縮角)
, , 。
6)、萬能公式(可以理解為二倍角公式的另一種形式)
, , 。
萬能公式告訴我們,單角的三角函數(shù)都可以用半角的正切來表示。
7)、和差化積公式
…⑴
…⑵
…⑶
…⑷
了解和差化積公式的推導(dǎo),有助于我們理解并掌握好公式:
兩式相加可得公式⑴,兩式相減可得公式⑵。
兩式相加可得公式⑶,兩式相減可得公式⑷。
8)、積化和差公式
我們可以把積化和差公式看成是和差化積公式的逆應(yīng)用。
9)、輔助角公式
()
其中:角 的終邊所在的象限與點(diǎn) 所在的象限相同,
, , 。
10)、正弦定理
( 為 外接圓半徑)
11)、余弦定理
七、平面向量
1.基本概念:
向量的定義、向量的模、零向量、單位向量、相反向量、共線向量、相等向量。
2. 加法與減法的代數(shù)運(yùn)算:
(1) .
(2)若a=( ),b=( )則a b=( ).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
向量加法有如下規(guī)律: + = + (交換律); +( +c)=( + )+c (結(jié)合律);
+0= +(- )=0.
3.實(shí)數(shù)與向量的積:實(shí)數(shù) 與向量 的積是一個(gè)向量。
(1) = • ;
(2) 當(dāng) >0時(shí), 與 的方向相同;當(dāng) <0時(shí), 與 的方向相反;當(dāng) =0時(shí), =0.
(3)若 =( ),則 • =( ).
兩個(gè)向量共線的充要條件:
(1) 向量b與非零向量 共線的充要條件是有且僅有一個(gè)實(shí)數(shù) ,使得b= .
(2) 若 =( ),b=( )則 ‖b .
平面向量基本定理:
若e1、e2是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量 ,有且只有一對(duì)實(shí)數(shù) , ,使得 = e1+ e2.
4.P分有向線段 所成的比:
設(shè)P1、P2是直線 上兩個(gè)點(diǎn),點(diǎn)P是 上不同于P1、P2的任意一點(diǎn),則存在一個(gè)實(shí)數(shù) 使 = , 叫做點(diǎn)P分有向線段 所成的比。
當(dāng)點(diǎn)P在線段 上時(shí), >0;當(dāng)點(diǎn)P在線段 或 的延長線上時(shí), <0;
分點(diǎn)坐標(biāo)公式:
5. 向量的數(shù)量積:
(1).向量的夾角:
(2).兩個(gè)向量的數(shù)量積:
(3).向量的數(shù)量積的性質(zhì):
(4) .向量的數(shù)量積的運(yùn)算律:
6.主要思想與方法:
本章主要樹立數(shù)形轉(zhuǎn)化和結(jié)合的觀點(diǎn),以數(shù)代形,以形觀數(shù),用代數(shù)的運(yùn)算處理幾何問題,特別是處理向量的相關(guān)位置關(guān)系,正確運(yùn)用共線向量和平面向量的基本定理,計(jì)算向量的模、兩點(diǎn)的距離、向量的夾角,判斷兩向量是否垂直等。由于向量是一新的工具,它往往會(huì)與三角函數(shù)、數(shù)列、不等式、解幾等結(jié)合起來進(jìn)行綜合考查,是知識(shí)的交匯點(diǎn)。
八、立體幾何
1.平面的基本性質(zhì):掌握三個(gè)公理及推論,會(huì)說明共點(diǎn)、共線、共面問題。
能夠用斜二測法作圖。
2.空間兩條直線的位置關(guān)系:平行、相交、異面的概念;
會(huì)求異面直線所成的角和異面直線間的距離;證明兩條直線是異面直線一般用反證法。
3.直線與平面
①位置關(guān)系:平行、直線在平面內(nèi)、直線與平面相交。
②直線與平面平行的判斷方法及性質(zhì),判定定理是證明平行問題的依據(jù)。
③直線與平面垂直的證明方法有哪些?
④直線與平面所成的角:關(guān)鍵是找它在平面內(nèi)的射影,范圍是{00.900}
⑤三垂線定理及其逆定理:每年高考試題都要考查這個(gè)定理. 三垂線定理及其逆定理主要用于證明垂直關(guān)系與空間圖形的度量.如:證明異面直線垂直,確定二面角的平面角,確定點(diǎn)到直線的垂線.
4.平面與平面
(1)位置關(guān)系:平行、相交,(垂直是相交的一種特殊情況)
(2)掌握平面與平面平行的證明方法和性質(zhì)。
(3)掌握平面與平面垂直的證明方法和性質(zhì)定理。尤其是已知兩平面垂直,一般是依據(jù)性質(zhì)定理,可以證明線面垂直。
(4)兩平面間的距離問題→點(diǎn)到面的距離問題→
(5)二面角。二面角的平面交的作法及求法:
①定義法,一般要利用圖形的對(duì)稱性;一般在計(jì)算時(shí)要解斜三角形;
②垂線、斜線、射影法,一般要求平面的垂線好找,一般在計(jì)算時(shí)要解一個(gè)直角三角形。
③射影面積法,一般是二面交的兩個(gè)面只有一個(gè)公共點(diǎn),兩個(gè)面的交線不容易找到時(shí)用此法?
九、三角形的面積公式
(兩邊一夾角)
( 為 外接圓半徑)
( 為 內(nèi)切圓半徑)
…海侖公式(其中 )
以上就是為大家提供的“高一數(shù)學(xué)知識(shí)要點(diǎn)與公式總結(jié)”希望能對(duì)考生產(chǎn)生幫助,更多資料請(qǐng)咨詢中考頻道。
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/213034.html
相關(guān)閱讀:2012年高考數(shù)學(xué)命題預(yù)測之函數(shù)與導(dǎo)數(shù)