數(shù)學(xué)解題的思維過程

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


  數(shù)學(xué)解題的思維過程是指從理解問題開始,經(jīng)過探索思路,轉(zhuǎn)換問題直至解決問題,進(jìn)行回顧的全過程的思維活動(dòng)。

  對(duì)于數(shù)學(xué)解題思維過程,可簡要總結(jié)為弄清問題、擬定計(jì)劃、實(shí)現(xiàn)計(jì)劃和回顧。這四個(gè)階段思維過程的實(shí)質(zhì),可以用下列八個(gè)字加以概括:理解、轉(zhuǎn)換、實(shí)施、反思。

  第一階段:理解問題是解題思維活動(dòng)的開始。

  第二階段:轉(zhuǎn)換問題是解題思維活動(dòng)的核心,是探索解題方向和途徑的積極的嘗試發(fā)現(xiàn)過程,是思維策略的選擇和調(diào)整過程。

  第三階段:計(jì)劃實(shí)施是解決問題過程的實(shí)現(xiàn),它包含著一系列基礎(chǔ)知識(shí)和基本技能的靈活運(yùn)用和思維過程的具體表達(dá),是解題思維活動(dòng)的重要組成部分。

  第四階段:反思問題往往容易為人們所忽視,它是發(fā)展數(shù)學(xué)思維的一個(gè)重要方面,是一個(gè)思維活動(dòng)過程的結(jié)束包含另一個(gè)新的思維活動(dòng)過程的開始。

  數(shù)學(xué)解題的技巧

  為了使回想、聯(lián)想、猜想的方向更明確,思路更加活潑,進(jìn)一步提高探索的成效,我們必須掌握一些解題的策略。

  一切解題的策略的基本出發(fā)點(diǎn)在于“變換”,即把面臨的問題轉(zhuǎn)化為一道或幾道易于解答的新題,以通過對(duì)新題的考察,發(fā)現(xiàn)原題的解題思路,最終達(dá)到解決原題的目的。

  基于這樣的認(rèn)識(shí),常用的解題策略有:熟悉化、簡單化、直觀化、特殊化、一般化、整體化、間接化等。

  一、熟悉化策略

  所謂熟悉化策略,就是當(dāng)我們面臨的是一道以前沒有接觸過的陌生題目時(shí),要設(shè)法把它化為曾經(jīng)解過的或比較熟悉的題目,以便充分利用已有的知識(shí)、經(jīng)驗(yàn)或解題模式,順利地解出原題。

  一般說來,對(duì)于題目的熟悉程度,取決于對(duì)題目自身結(jié)構(gòu)的認(rèn)識(shí)和理解。從結(jié)構(gòu)上來分析,任何一道解答題,都包含條件和結(jié)論(或問題)兩個(gè)方面。因此,要把陌生題轉(zhuǎn)化為熟悉題,可以在變換題目的條件、結(jié)論(或問題)以及它們的聯(lián)系方式上多下功夫。

  常用的途徑有:

 。ㄒ唬、充分聯(lián)想回憶基本知識(shí)和題型:

  按照波利亞的觀點(diǎn),在解決問題之前,我們應(yīng)充分聯(lián)想和回憶與原有問題相同或相似的知識(shí)點(diǎn)和題型,充分利用相似問題中的方式、方法和結(jié)論,從而解決現(xiàn)有的問題。

 。ǘ、全方位、多角度分析題意:

  對(duì)于同一道數(shù)學(xué)題,常?梢圆煌膫(cè)面、不同的角度去認(rèn)識(shí)。因此,根據(jù)自己的知識(shí)和經(jīng)驗(yàn),適時(shí)調(diào)整分析問題的視角,有助于更好地把握題意,找到自己熟悉的解題方向。

 。ㄈ┣‘(dāng)構(gòu)造輔助元素:

  數(shù)學(xué)中,同一素材的題目,常?梢杂胁煌谋憩F(xiàn)形式;條件與結(jié)論(或問題)之間,也存在著多種聯(lián)系方式。因此,恰當(dāng)構(gòu)造輔助元素,有助于改變題目的形式,溝通條件與結(jié)論(或條件與問題)的內(nèi)在聯(lián)系,把陌生題轉(zhuǎn)化為熟悉題。

  數(shù)學(xué)解題中,構(gòu)造的輔助元素是多種多樣的,常見的有構(gòu)造圖形(點(diǎn)、線、面、體),構(gòu)造算法,構(gòu)造多項(xiàng)式,構(gòu)造方程(組),構(gòu)造坐標(biāo)系,構(gòu)造數(shù)列,構(gòu)造行列式,構(gòu)造等價(jià)性命題,構(gòu)造反例,構(gòu)造數(shù)學(xué)模型等等。

  二、簡單化策略

  所謂簡單化策略,就是當(dāng)我們面臨的是一道結(jié)構(gòu)復(fù)雜、難以入手的題目時(shí),要設(shè)法把轉(zhuǎn)化為一道或幾道比較簡單、易于解答的新題,以便通過對(duì)新題的考察,啟迪解題思路,以簡馭繁,解出原題。

  簡單化是熟悉化的補(bǔ)充和發(fā)揮。一般說來,我們對(duì)于簡單問題往往比較熟悉或容易熟悉。

  因此,在實(shí)際解題時(shí),這兩種策略常常是結(jié)合在一起進(jìn)行的,只是著眼點(diǎn)有所不同而已。

  解題中,實(shí)施簡單化策略的途徑是多方面的,常用的有:尋求中間環(huán)節(jié),分類考察討論,簡化已知條件,恰當(dāng)分解結(jié)論等。

  1、尋求中間環(huán)節(jié),挖掘隱含條件:

  在些結(jié)構(gòu)復(fù)雜的綜合題,就其生成背景而論,大多是由若干比較簡單的基本題,經(jīng)過適當(dāng)組合抽去中間環(huán)節(jié)而構(gòu)成的。

  因此,從題目的因果關(guān)系入手,尋求可能的中間環(huán)節(jié)和隱含條件,把原題分解成一組相互聯(lián)系的系列題,是實(shí)現(xiàn)復(fù)雜問題簡單化的一條重要途徑。

  2、分類考察討論:

  在些數(shù)學(xué)題,解題的復(fù)雜性,主要在于它的條件、結(jié)論(或問題)包含多種不易識(shí)別的可能情形。對(duì)于這類問題,選擇恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),把原題分解成一組并列的簡單題,有助于實(shí)現(xiàn)復(fù)雜問題簡單化。

首頁上一頁12下一頁末頁共2頁
本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/293907.html

相關(guān)閱讀:激發(fā)和培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)熱情