高三數(shù)學(xué)三角函數(shù)、解三角形訓(xùn)練題

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

章末綜合測(5)三角函數(shù)、解三角形 
一、選擇題:本大題共12小題,每小題5分,共60分.
1.已知角α的終邊過點P(-8m,-6sin30°),且cosα=-45,則m的值為(  )
A.-12    B.12    C.-32    D.32
解析:∵OP=64m2+9,且cosα=-8m64m2+9=-45,
∴m>0,且64m264m2+9=-1625=-45,∴m=12.
答案:B
2.已知扇形的周長為6 cm,面積是2 cm2,則扇形的圓心角的弧度數(shù)是(  )
A.1 B.4 C.1或4 D.2或4
解析:設(shè)扇形的圓心角為α rad,半徑為R,
則2R+α•R=6,12α•R2=2,解得α=1,或α=4.
答案:C
3.已知函數(shù)f(x)=sinωx+π3(ω>0)的最小正周期為π,則該函數(shù)圖像(  )
A.關(guān)于直線x=π4對稱 B.關(guān)于點(π3,0)對稱
C.關(guān)于點(π4,0)對稱 D.關(guān)于直線x=π3對稱
解析:∵T=π,∴ω=2.
∵當(dāng)x=π4 時,f(x)=12;當(dāng)x=π3時,f(x)=0,∴圖像關(guān)于(π3,0)中心對稱.
答案:B
4.要得到函數(shù)y=cos2x的圖像,只需將函數(shù)y=cos2x-π3的圖像(  )
A.向右平移π6個單位 B.向右平移π3個單位
C.向左平移π3個單位 D.向左平移π6個單位
解析:由cos2x=cos2x-π3+π3=cos2x+π6-π3
知,只需將函數(shù)y=cos2x-π3的圖像向左平移π6個單位.
答案:D
5.若2a=3sin2+cos2,則實數(shù)a的取值范圍是(  )
A.0,12 B.12,1
C.-1,-12 D.-12,0
解析:∵3sin2+cos2=2sin2+π6,又34π<2+π6<56 π,∴1<2sin2+π6<2,
即1<2a<2,∴0<a<12.
答案:A
6.函數(shù)y=3sin-2x-π6(x∈[0,π])的單調(diào)遞增區(qū)間是(  )
A.0,5π12 B.π6,2π3
C.π6,11π12 D.2π3,11π12
解析:∵y=-3sin2x+π6,∴由2kπ+π2≤2x+π6≤2kπ+3π2,k∈Z,得
kπ+π6≤x≤kπ+2π3,k∈Z. 又x∈[0,π],∴k=0.此時x∈π6,2π3.
答案:B
7.已知tanα=12,tan(α-β)=-25,那么tan(2α-β)的值是(  )
A.-112 B.112 C.322 D.318
解析:tan(2α-β)=tan[α+(α-β)]=tanα+tan(α-β)1-tanαtan(α-β)=12-251-12×-25=112.
答案:B
8.定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期為π,且當(dāng)x∈0,π2時,f(x)=sinx,則f5π3的值為(  )
A.-12 B.12 C.-32 D.32
解析:f5π3=f5π3-2π=f-π3=fπ3=sinπ3=32.
答案:D
9.已知cosπ4+θcosπ4-θ=14,則sin4θ+cos4θ的值等于(  )
A.34 B.56 C.58 D.32
解析:由已知,得sinπ4-θcosπ4-θ=14,即12sinπ2-2θ=14,∴cos2θ=12.
∴sin22θ=1-122=34。則sin4θ+cos4θ=1-2sin2θcos2θ=1-12sin22θ=1-38=58.
答案:C
10.已知α、β為銳角,且sinα=55,sinβ=1010,則α+β=(  )
A.-3π4 B.π4或3π4 C.3π4 D.π4
解析:∵α、β為銳角,且sinα=55,sinβ=1010,
∴cosα=255,cosβ=31010,且α+β∈(0,π),∴cos(α+β)=cosαcosβ-sinαsinβ
=65050-5050=55050=22, ∴α+β=π4.
答案:D
11.在△ABC中,cos2B2=a+c2c(a、b、c分別為角A、B、C的對邊),則△ABC的形狀為(  )
A.等邊三角形 B.直角三角形
C.等腰三角形或直角三角形 D.等腰直角三角形
解析:∵cos2B2=a+c2c,∴2cos2B2-1=a+cc-1,
∴cosB=ac,∴a2+c2-b22ac=ac,∴c2=a2+b2, 故△ABC為直角三角形.
答案:B
12.在沿海某次臺風(fēng)自然災(zāi)害中,臺風(fēng)中心最大風(fēng)力達(dá)到10級以上,大風(fēng)降雨給沿海地區(qū)帶為嚴(yán)重的災(zāi)害,不少大樹被大風(fēng)折斷,某路邊一樹干被臺風(fēng)吹斷后,折成與地面成45°角,樹干也傾斜為與地面成75°角,樹干底部與樹尖著地處相距20米,則折斷點與樹干底部的距離是(  )
A.2063米 B.106米 C.1063米 D.202米
解析:設(shè)折斷點與樹干底部的距離為x米.
則xsin45°=20sin(180°-75°-45°)=20sin60°,
∴x=20×sin45°sin60°=2023=2063(米).
答案:A

二、填空題:本大題共4個小題,每小題5分,共20分.
13.若π4是函數(shù)f(x)=sin2x+acos2x(a∈R,且為常數(shù))的零點,則f(x)的最小正周期是__________.
解析:由題意,得fπ4=sinπ2+acos2π4=0,∴1+12a=0,∴a=-2.
∴f(x)=sin2x-2cos2x=sin2x-cos2x-1=2sin2x-π4-1,
∴f(x)的最小正周期為π.
答案:π
14.在△ABC中,tanA+tanB+3=3tanAtanB.sinAcosB=34, 則△ABC的形狀為__________.
解析:∵tanA+tanB=3(tanAtanB-1),
∴tan(A+B)=tanA+tanB1-tanAtanB=-3, ∴tanC=3,又C∈(0,π),∴C=π3.
∴sinC=sin(A+B)=sinAcosB+cosAsinB=32,
∴cosAsinB=34,∴sinAcosB=cosAsinB,∴sin(A-B)=0,∴A=B.
∴△ABC為正三角形.
答案:正三角形
15.若將函數(shù)y=tanωx+π4(ω>0)的圖像向右平移π6個單位后,與函數(shù)y=tanωx+π6的圖像重合,則ω的最小值為__________.
解析: 由已知,得tanωx-π6+π4=tanωx-ω6π+π4=tanωx+π6,得π4-ω6π=kπ+
π6(k∈Z),∴ω=-6k+12(k∈Z).∵ω>0,∴當(dāng)k=0時,ω的 最小值為12.
答案:12
16.給出下列命題:
①半徑為2,圓心角的弧度數(shù)為12的扇形面積為12;
②若α、β為銳角,tan(α+β)=12,tanβ=13,則α+2β=π4;
③若A 、B是△ABC的兩個內(nèi)角,且sinA<sinB,則BC<AC;
④若a、b、c分別是△ABC的三個內(nèi)角A、B、C的對邊,且a2+b2-c2<0,則△ABC是鈍角三角形.
其中真命題的序號是__________.
解析:①中,S扇形=12α•R2=12×12×22=1,
∴①不正確.
②中,由已知可得tan(α+2β)=tan[(α+β)+β]=tan(α+β)+tanβ1-tan(α+β)tanβ=13+121-13×12=1,
又α、β為銳角,tan(α+β)=12>0,∴0<α+β<π2.
又由tanβ=13<1,得0<β<π4, ∴0<α+2β<34π,∴α+2β=π4.∴②正確.
③中,由sinA<sinB⇒BC2R<AC2R(2R為△ABC的外接圓半徑)⇒BC<AC.∴③正確.
④中,由a2+b2-c2<0知,c osC<0,
∴C為鈍角,∴△ABC為鈍角三角形.∴④正確.
答案:②③④
三、解答題:本大題共6小題,共70分.
17.(10分)已知sinα=-55 ,tanβ=-13,且α、β∈-π2,0.
(1)求α+β的值; (2)求2sin=π4-α+cosπ4+β的值.
解析:(1)∵sinα=-55,α∈-π2,0, ∴cosα=255.∴tanα=-12,
∴tan(α+β)=tanα+tanβ1-tanαtanβ=-1. 又∵-π<α+β<0,∴α+β=-π4.
(2)由(1)知,α+β=-π4,
2sinπ4-α+cosπ4+β=2sinπ4-α+cosπ4-π4-α=2sinπ4-α+cosα
=2cosα-sinα=2×255+55=5.
18.(12分)已知α、β為銳角,向量a=(cosα,sinα),b=(cosβ,sinβ),c=12,-12.
(1)若a•b=22,a•c=3-14,求角2β-α的值;
(2)若a=b+c,求tanα的值.
解析:(1)a•b=(cosα,sinα)•(cosβ,sinβ)
=cosαcosβ+sinαsinβ
=cos(α-β)=22.①
a•c=(cosα,sinα)•12,-12
=12cosα-12sinα=3-14.②
又∵0<α<π2,0<β<π2,∴-π2<α-β<π2.
由①得α-β=±π4,由②得α=π6.
∵α、β為銳角,∴β=5π12.從而2β-α=23π.
(2)由a=b+c,可得cosβ=cosa-12,      、踫inβ=sinα+12. ④
③2+④2,得cosα-sinα=12.
∴2sinαcosα=34.
又∵2sinαcosα=2sinαcosαsin2α+cos2α=2tanαtan2α+1=34,
∴3tan2α-8tanα+3=0.
又∵α為銳角,∴tanα>0,
∴tanα=8±82-4×3×36=8±286=4±73.
19.(12分)已知函數(shù)f(x)=Asin(ωx+φ)A>0,ω>0,-π2<φ<π2一個周期的圖像如圖所示.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若f(α)+fα-π3=2425,且α為△ABC的一個內(nèi)角,
求sinα+cosα的值.
解析:(1)由圖知,函數(shù)的最大值為1,則A=1,
函數(shù)f(x)的周期為T= 4×π12+π6=π.
而T=2πω,則ω=2.
又x=-π6時,y=0,∴sin2×-π6+φ=0.
而-π2<φ<π2,則φ=π3.
∴函數(shù)f(x)的表達(dá)式為f(x)=sin2x+π3.
(2)由f(α)+fα-&pi 高中物理;3=2425,得
sin2α+π3+sin2α-π3=2425,化簡,得sin2α=2425.
∴(sinα+cosα)2=1+sin2α=4925.
由于0 <α<π,則0<2α<2π,
但sin2α=2425>0,則0<2α<π,即α為銳角,
從而sinα+cosα>0,因此sinα+cosα=75.
20.(12分)在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且bcosC=3acosB-ccosB.
(1)求cosB的值.
(2)若BA→•BC→=2,b=22,求a 和c.
解析:(1)△ABC中,∵bcosC=3acosB-ccosB,
由正弦定理,得sinB•cosC=3sinAcosB-sinCco sB,
∴sinBcosC+sinCcosB=3sinAcosB,
∴sin(B+C)=sinA=3sinAcosB.
∵sinA≠0,∴cosB=13.
(2)∵BA→•BC→=ac•cosB= 13ac=2,∴ac=6.
∵b2=8=a2+c2-2accosB=a2+c2-4,
∴a2+c2=12,∴a2-2ac+c2=0,
即(a-c)2=0,∴a=c=6.
21.(12分)已知△ABC是半徑為R的圓的內(nèi)接三角形,且2R(sin2A-sin2C)=(2a-b)sinB.
(1)求角C;
(2)試求△ABC面積S的最大值.
解析:(1)由2R(sin2A-sin2C)=(2a-b)sinB,
兩邊同乘以2R,得
(2RsinA)2-(2RsinC)2=(2a-b)2RsinB,
根據(jù)正弦定理,得a=2RsinA,b=2RsinB,c=2RsinC,
∴a2-c2=(2a-b)b,即a2+b2-c2=2ab.
再由余弦定理,得cosC=a2+b2-c22ab=22,
又0<C<π,∴C=π4.
(2)∵C=π4,∴A+B=3π4.
S=12absinC=24(2RsinA)(2RsinB)=2R2sinAsinB
=2R2sinAsin34π-A=22R2sin2A-π4+12R2,
∴當(dāng)2A-π4=π2,即A=38π時,
S有最大值12+22R2.
22.(12分)如圖,某市擬在長為8 km的道路OP的一側(cè)修建一條運動賽道.賽道的前一部分為曲線段OSM,該曲線段為函數(shù)y=Asinωx(A>0,ω>0),x∈[0,4]的圖像,且圖像的最高點為S(3,23);賽道的后一部分為折線段MNP.為保證參賽運動員的安全,限定∠MNP=120°.
(1)求A,ω的值和M,P兩點間的距離;
(2)應(yīng)如何設(shè)計,才能使折線段賽道MNP最長?
解析:一:
(1)依題意,

故NP+MN=1033sinθ+1033sin(60°-θ)
=103312sinθ+32cosθ
=1033sin(θ+60°).
∵0°<θ<60°,∴當(dāng)θ=30°時,折線段賽道MNP最長.
即將∠PMN設(shè)計為30°時,折線段賽道MNP最長.
方法二:(1)同方法一;
(2)在△MNP中,∠MNP=120°,MP=5,
由余弦定理,得
MN2+NP2-2MN•NP•cos∠MNP=MP2,
即MN2+NP2+MN•NP=25.
故(MN+NP)2-25=MN•NP≤MN+NP22,
從而34(MN+NP)2≤25,即MN+NP≤1033,
當(dāng)且僅當(dāng)MN=NP時等號成立.
即設(shè)計為MN=NP時,折線段賽道MNP最長.

本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/31340.html

相關(guān)閱讀:幾何的三大問題