高一數(shù)學《函數(shù)的奇偶性》教案

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學 來源: 高中學習網(wǎng)

課題:1.3.2函數(shù)的奇偶性
一、三維目標:
與技能:使理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。
過程與:通過設置問題情境培養(yǎng)學生判斷、推斷的。
情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操. 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學生善于探索的品質(zhì)。
二、重、難點:
重點:函數(shù)的奇偶性的概念。
難點:函數(shù)奇偶性的判斷。
三、學法指導:
學生在獨立思考的基礎上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的應用采取講練結(jié)合的方式進行處理,使學生邊學邊練,及時鞏固。
四、知識鏈接:
1.在學習的軸對稱圖形和中心對稱圖形的定義:

2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。
五、學習過程:
函數(shù)的奇偶性:
(1)對于函數(shù) ,其定義域關(guān)于原點對稱:
如果______________________________________,那么函數(shù) 為奇函數(shù);
如果______________________________________,那么函數(shù) 為偶函數(shù)。
(2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。
(3)奇函數(shù)在對稱區(qū)間的增減性 ;偶函數(shù)在對稱區(qū)間的增減性 。
六、達標訓練:
A1、判斷下列函數(shù)的奇偶性。
(1)f(x)=x4;   。2)f(x)=x5;
(3)f(x)=x+     (4)f(x)=

A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .
B3、已知 ,其中 為常數(shù),若 ,則
_______ .
B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )
(A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對
B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .
C6、若函數(shù) 是定義在R上的奇函數(shù),且當 時, ,那么當
時, =_______ .
D7、設 是 上的奇函數(shù), ,當 時 高中化學, ,則 等于 ( )
(A)0.5 (B) (C)1.5 (D)
D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .
七、學習小結(jié):
本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應用是本節(jié)的一個難點,需要學生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。

八、課后反思:

本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/32545.html

相關(guān)閱讀:集合的基本運算