高中數(shù)學(xué)知識(shí)點(diǎn)方法指導(dǎo):如何突破數(shù)學(xué)命題難點(diǎn)

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)

高中數(shù)學(xué)知識(shí)點(diǎn)方法指導(dǎo):如何突破數(shù)學(xué)命題難點(diǎn)

【摘要】多了解一些考試資訊信息,對(duì)于學(xué)生和家長來講非常重要,數(shù)學(xué)網(wǎng)為大家整理了高中數(shù)學(xué)知識(shí)點(diǎn)方法指導(dǎo):如何突破數(shù)學(xué)命題難點(diǎn)一文,希望對(duì)大家有幫助。

一、 定位整體

新課程標(biāo)準(zhǔn)對(duì)常用邏輯用語的定位為:正確使用邏輯用語是現(xiàn)代社會(huì)公民應(yīng)該具備的基本素質(zhì),無論是進(jìn)行思考、交流,還是從事各項(xiàng)工作,都需要正確的運(yùn)用邏輯用語表達(dá)自己的思想.在本模塊中,同學(xué)們將在義務(wù)教育的基礎(chǔ)上,學(xué)習(xí)常用邏輯用語,體會(huì)邏輯用語在表述和論證中的作用,利用這些邏輯用語準(zhǔn)確地表達(dá)數(shù)學(xué)內(nèi)容,更好地進(jìn)行交流. 因此,學(xué)習(xí)邏輯用語,不僅要了解數(shù)理邏輯的有關(guān)知識(shí),還要體會(huì)邏輯用語在表述或論證中的作用,使以后的論證和表述更加準(zhǔn)確、清晰和簡潔.

二、 明確重點(diǎn)

常用邏輯用語分成三大節(jié),分別為:命題及其關(guān)系,簡單的邏輯聯(lián)結(jié)詞,全稱量詞與存在量詞.

命題及其關(guān)系分兩小節(jié):一、四種命題,此節(jié)重點(diǎn)在于四種命題形式及其關(guān)系,互為逆否命題的等價(jià)性;二、充分條件和必要條件,此節(jié)重點(diǎn)在于充分條件、必要條件、充要條件的準(zhǔn)確理解以及正確判斷.

簡單的邏輯聯(lián)結(jié)詞重點(diǎn)在于且、 或、 非這三個(gè)邏輯聯(lián)結(jié)詞的理解和應(yīng)用.

全稱量詞與存在量詞重點(diǎn)在于理解全稱量詞與存在量詞的意義,以及正確做出含有一個(gè)量詞的命題的否定.

三、 突破難點(diǎn)

1. 四種命題的難點(diǎn)在于分清命題的條件和結(jié)論以及判斷命題的真假

例1 分別寫出下列命題的逆命題、否命題、逆否命題,并判斷它們的真假.

(1) 全等三角形的面積相等;

(2) m時(shí),方程mx2-x+1=0無實(shí)根;

(3) 若sin,則30.

解析 (1) 條件為兩個(gè)三角形全等,結(jié)論為它們的面積相等.因此,原命題即為若兩個(gè)三角形全等,則它們的面積相等,逆命題為若兩個(gè)三角形面積相等,則它們?nèi)龋衩}為若兩個(gè)三角形不全等,則它們的面積不相等,逆否命題為若兩個(gè)三角形面積不相等,則它們不全等.根據(jù)平面幾何知識(shí),易得原命題和逆否命題為真命題,逆命題和否命題為假命題.

(2) 原命題即為若m,則方程mx2-x+1=0無實(shí)根,逆命題為若方程mx2-x+1=0無實(shí)根,則m,否命題為若m,則方程mx2-x+1=0有實(shí)根,逆否命題為若方程mx2-x+1=0有實(shí)根,則m.根據(jù)判別式=1-4m的正負(fù)可知,原命題、逆命題、否命題、逆否命題均為真命題.

(3) 原命題即為若sin,則30,逆命題為若30,則sin,否命題為若sin=,則=30,逆否命題為若=30,則sin=.直接判斷原命題與逆命題真假有些困難,但考慮到原命題與逆否命題等價(jià),逆命題與否命題等價(jià),因此可以先考慮逆否命題和否命題;由三角函數(shù)的知識(shí),可知原命題和逆否命題為真命題,逆命題和否命題為假命題.

突破 對(duì)于判斷命題的真假,我們需要先弄清何為條件、何為結(jié)論,然后根據(jù)相應(yīng)的知識(shí)進(jìn)行判斷,當(dāng)原命題不容易直接判斷時(shí),可以先判斷其逆否命題的真假性,從而得到原命題的真假性.

2. 充分條件和必要條件的難點(diǎn)在于充要性的判斷

例2 在下列命題中,判斷p是q的什么條件.(在充分不必要條件、必要不充分條件、充要條件、既不充分又不必要條件中選出一種)

(1) p:|p|2,pq:方程x2+px+p+3=0有實(shí)根.

(2) p:圓x2+y2=r2與直線ax+by+c=0相切;q:c2=(a2+b2)r2,其中a2+b20,r0.

(3) 設(shè)集合M=x2,N=x3,p:xN;q:xN.

解析 (1) 當(dāng)|p|2時(shí),例如p=3,此時(shí)方程x2+px+p+3=0無實(shí)根,因此若p則q為假命題;當(dāng)方程x2+px+p+3=0有實(shí)根時(shí),根據(jù)判別式有p-2或p6,此時(shí)|p|2成立,因此若q則p為真命題.故p是q的必要不充分條件.

(2) 若圓x2+y2=r2與直線ax+by+c=0相切,則圓心(0,0)到直線ax+by+c=0的距離等于r,即r=,化簡可得c2=(a2+b2)r2,因此若p則q為真命題;反過來,由c2=(a2+b2)r2,可得r=,即圓心(0,0)到直線ax+by+c=0的距離等于r,由解析幾何知識(shí)得圓與直線相切,因此若q則p為真命題.故p是q的充要條件.

(3) MN=(2,3),MN=R,若x(2,3),此時(shí)顯然有xR,因此若p則q為真命題;反過來,若xR,例如x=5,此時(shí)x?埸(2,3),因此若q則p為假命題.故p是q的充分不必要條件.

突破 ①從邏輯的觀點(diǎn)理解:判斷充分性、必要性的前提是判斷給定命題的真假性,若若p則q為真命題,則p是q的充分條件;若若q則p為真命題,則p是q的必要條件;若兩者都是真命題,則p是q的充要條件;若兩者都是假命題,則p是q的既不充分也不必要條件.②從集合的觀點(diǎn)理解:建立命題p,q相應(yīng)的集合. p:A=p(x)成立,q:B=x.那么:若A?哿B,則p是q的充分條件;若B?哿A,則p是q的必要條件;若A=B,則p是q的充要條件.若A?芫B且B?芫A,則p是q的既不充分也不必要條件.

例3 已知數(shù)列an的前n項(xiàng)和Sn=pn+q(p0且p1),求證:數(shù)列an為等比數(shù)列的充要條件為q=-1.

解析 充分性:當(dāng)q=-1時(shí),a1=p-1;當(dāng)n2時(shí),an=Sn-Sn-1=pn-1(p-1).于是當(dāng)n1時(shí),=p,即數(shù)列an為等比數(shù)列.

必要性:當(dāng)n=1時(shí),a1=S1=p+q;當(dāng)n2時(shí),an=Sn-Sn-1

=pn-1(p-1).因?yàn)閜0且p1,于是=p.又因?yàn)閿?shù)列an為等比數(shù)列,所以==p,即=p,解之得q=-1.

綜上所述,q=-1為數(shù)列an為等比數(shù)列的充要條件.

突破 證明p是q的充要條件需要分兩步:①充分性,把p作為已知條件,結(jié)合命題的前提條件,推出q;②必要性,把q作為已知條件,結(jié)合命題的前提條件,推出p.最后綜上所述,可得p是q的充要條件.特別注意:充分條件的意義只在于保證結(jié)論成立,而不管它對(duì)結(jié)論成立是否必要;必要條件的意義只在于要使結(jié)論成立它必不可少,而不管它對(duì)結(jié)論成立是否充分.因此,在進(jìn)行恒等變形或探求充要條件的過程中,只注意推導(dǎo)過程的充分性,其結(jié)果有可能縮小范圍;只注意推導(dǎo)過程的必要性,其結(jié)果有可能擴(kuò)大范圍.

3. 簡單邏輯聯(lián)結(jié)詞的難點(diǎn)在于復(fù)合命題的真假性判斷以及命題的否定與否命題的區(qū)分

例4 指出下列命題的真假.

(1) -1是奇數(shù)或偶數(shù);

(2) 屬于集合Q,也屬于集合R;

(3) A?埭(AB).

解析 (1) 此命題為p或q的形式,其中p:-1是奇數(shù);q:-1是偶數(shù).因?yàn)閜為真命題,所以原命題為真命題.

(2) 此命題為p且q的形式,其中p:屬于集合Q;q:屬于集合R.因?yàn)橹挥衠為真命題,所以原命題為假命題.

(3) 此命題為非p的形式,其中p:A?哿(AB).因?yàn)閜為真命題,所以原命題為假命題.

突破 判斷如p或q、p且q、非p形式的復(fù)合命題的真假時(shí),首先要確定命題的構(gòu)成形式,然后判斷其中各簡單命題的真假,最后再利用真值表判斷復(fù)合命題的真假.

例5 寫出下列各命題的否定和否命題.

(1) 若x+y是偶數(shù),則x,y都是奇數(shù);

(2) 若xy=0,則x=0或y=0.

解析 (1) 命題的否定:若x+y是偶數(shù),則x,y不都是奇數(shù);否命題:若x+y不是偶數(shù),則x,y不都是奇數(shù).

(2) 命題的否定:若xy=0,則x0且y否命題:若xy0,則x0且y0.

突破 命題的否定只是否定命題的結(jié)論,而否命題既否定題設(shè),又否定結(jié)論.需注意x=0或y=0的否定是0且y而不是0或y;x,y都是奇數(shù)的否定是x,y不都是奇數(shù)而不是x,y都不是奇數(shù).

4. 全稱量詞與存在量詞的難點(diǎn)在于全稱命題和存在性命題的真假性判斷以及含有一個(gè)量詞的命題的否定

例6 判斷下列命題是否為全稱命題或存在性命題,并判斷真假.

(1) 有一個(gè)實(shí)數(shù),tan無意義;

(2) 任何一條直線都有斜率;

(3) ?堝x0,使x2+x+5

(4) 自然數(shù)的平方是正數(shù).

解析 (1) 存在性命題,當(dāng)=時(shí),tan無意義,因此原命題為真命題.

(2) 全稱命題,當(dāng)傾斜角為時(shí),該直線斜率不存在,因此原命題為假命題.

(3) 存在性命題,由判別式可知=1-45=-190,所以對(duì)?坌xR,x2+x+50,因此原命題為假命題.

(4) 全稱命題,存在自然數(shù)0,其平方不是正數(shù),因此原命題為假命題.

突破 ①要判定全稱命題?坌xM,p(x)為真命題,需要對(duì)集合M中每個(gè)元素x,證明p(x)成立;如果集合M中找到一個(gè)元素x0,使得p(x)不成立,那么這個(gè)全稱命題為假命題.②要判定存在性命題?堝x0M,p(x)為真命題,只需在集合M中找到一個(gè)元素x0,使得p(x0)成立即可;如果在集合M中,使p(x)成立的元素x不存在,那么這個(gè)存在性命題是假命題.

例7 寫出下列命題的否定.

(1) 面積相等的三角形是全等三角形;

(2) 有些質(zhì)數(shù)是奇數(shù);

(3) 對(duì)?坌xR,x2+x+1=0都成立;

(4) ?堝xR,x2+2x+50.

解析 (1) 原命題是全稱命題,故其否定為:存在面積相等的三角形不是全等三角形.

(2) 原命題是存在性命題,故其否定為:所有的質(zhì)數(shù)都不是奇數(shù).

(3) 原命題是全稱命題,故其否定為:?堝xR,使x2+x+10.

(4) 原命題是存在性命題,故其否定為: 對(duì)?坌xR,x2+2x+50都成立.

突破 全稱命題與存在性命題的區(qū)別在于構(gòu)成兩種命題的量詞不同.實(shí)質(zhì)上,全稱量詞與存在量詞正好構(gòu)成了意義相反的表述,因此在書寫全稱命題與存在性命題的否定時(shí),一定要抓住決定命題性質(zhì)的量詞,從對(duì)量詞的否定入手書寫命題的否定.全稱命題的否定是存在性命題,而存在性命題的否定是全稱命題.

1. (2011年安徽理科卷)命題所有能被2整除的數(shù)都是偶數(shù)的否定是______________.

2. ( 2011年山東文科卷)已知a,b,cR,命題若a+b+c=3,則a2+b2+c2的否命題是________.

3. (2011年湖南文科卷)1是|x|的

__________條件.

4. (2011年福建理科卷)若aR,則a=2是(a-1)(a-2)=0的______________條件.

5. (2011年浙江理科卷)=是cos2=的______________條件.

6. (2011年山東理科卷)對(duì)于函數(shù)y=f(x),xR,y=|f(x)|的圖像關(guān)于y軸對(duì)稱是y=f(x)是奇函數(shù)的____________條件.

7. (2011年浙江文科卷)若a,b為實(shí)數(shù),則0

8. (2011年四川文科卷)設(shè)函數(shù)f(x)的定義域?yàn)锳,若x1,x2A且f (x1)=f(x2)時(shí),總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=2x+1(xR)是單函數(shù).

給出下列命題:① 函數(shù)f(x)=x2(xR)是單函數(shù);② 指數(shù)函數(shù)f(x)=2x(xR)是單函數(shù);③ 若f(x)為單函數(shù),x1,x2A且x1x2,則f(x1)④ 在定義域上具有單調(diào)性的函數(shù)一定是單函數(shù).其中的真命題是________.(寫出所有真命題的編號(hào))

1. 存在一個(gè)能被2整除的數(shù)不是偶數(shù). 2. 若a+b+c3,則a2+b2+c23. 3. 充分而不必要. 4. 充分而不必要. 5. 充分而不必要. 6. 必要而不充分. 7. 既不充分也不必要. 8. ②③④.

高中數(shù)學(xué)知識(shí)點(diǎn)方法指導(dǎo):如何突破數(shù)學(xué)命題難點(diǎn)就為您介紹完了,數(shù)學(xué)網(wǎng)的編輯將第一時(shí)間為您整理信息,供大家參考!


本文來自:逍遙右腦記憶 http://yy-art.cn/gaozhong/368500.html

相關(guān)閱讀:高中數(shù)學(xué)教學(xué)中學(xué)生思維能力的培養(yǎng)