高中數(shù)學(xué)知識點(diǎn):分類加法計(jì)數(shù)原理

編輯: 逍遙路 關(guān)鍵詞: 高中數(shù)學(xué) 來源: 高中學(xué)習(xí)網(wǎng)


分類原理:


完成一件事,有n類方法,在第一類方法中有m1種不同的方法,在第二類方法中有m2種不同的方法,…,在第n類方法中有mn種不同的方法,那么完成這件事共有不同的方法。
注:每類方法都能獨(dú)立地完成這件事,它是相互獨(dú)立的,一次的且每次得出的是最后的結(jié)果,只需一種方法就能完成這件事。



分類原理題型比較雜亂,幾種常見的現(xiàn)象有:


①開關(guān)現(xiàn)象:要根據(jù)開啟或閉合開關(guān)的個(gè)數(shù)分類;
②數(shù)圖形個(gè)數(shù):根據(jù)圖形是由幾個(gè)單一圖形組合而成進(jìn)行分類求情況數(shù);
③球賽得分:根據(jù)勝或負(fù)場次進(jìn)行分類。


分類的原則:


分類計(jì)數(shù)時(shí),首先要根據(jù)問題的特點(diǎn),確定一個(gè)適當(dāng)?shù)姆诸悩?biāo)準(zhǔn),然后利用這個(gè)分類標(biāo)準(zhǔn)進(jìn)行分類,分類時(shí)要注意兩條基本原則:一是完成這件事的任何一種方法必須分為相應(yīng)的類;二是不同類的任何方法必須是不同的方法,只要滿足這兩條基本原則,就可以確保計(jì)數(shù)的不重不漏.


特別提醒:


①明確題目中所指的"完成一件事"是指什么事,完成這件事可以有哪些辦法,怎樣才算完成這件事.
②完成這件事的n種方法是相互獨(dú)立的,無論哪種方案中的哪種方法都可以單獨(dú)完成這件事,而不需要再用到其他的方法.
③確立恰當(dāng)?shù)姆诸悩?biāo)準(zhǔn),準(zhǔn)確地對這件事進(jìn)行分類,要求第一種方法必定屬于某一類方案,不同類方案的任意兩種方法是不同的方法,也就是分類時(shí)必須做到既不重復(fù)也不遺漏.
④分類加法計(jì)數(shù)原理的集合表述形式:做一件事,完成它的辦法用集合S表示,S被分成n類辦法,分別用集合種不同的方法,即集合個(gè)元素,那么完成這件事共有的方法,即集合S中的無素的個(gè)數(shù)為




相關(guān)高中數(shù)學(xué)知識點(diǎn):分步乘法計(jì)數(shù)原理

分步原理:


完成一件事,需要n個(gè)步驟,做第一步有m1種不同的方法,做第二步有m2種不同的方法,…做第n步有mn種不同的方法,那么完成這件事共有N=m1m2…mn不同的方法。
注:一步得出的結(jié)果都不是最后的結(jié)果,任何一步都不能獨(dú)立地完成這件事,只有各個(gè)步驟都完成了,才能完成這件事。各步是關(guān)聯(lián)的。


兩種典型現(xiàn)象:


Ⅰ.涂顏色
(1)平面圖涂顏色:先涂接觸區(qū)域最多的一塊;
(2)立體圖涂顏色:先涂具有同一頂點(diǎn)的幾個(gè)平面,其他平面每步涂法分類列舉。
Ⅱ.映射
按步驟用A集合的每一個(gè)元素到B集合里選一個(gè)元素,可以重復(fù)選。



分類加法計(jì)數(shù)原理與分步乘法計(jì)數(shù)原理的關(guān)系:


(1)分類加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理,解決的都是有關(guān)做一件事的不同方法的種數(shù)問題,都是計(jì)數(shù)的方法問題,二者的區(qū)別在于:分類加法計(jì)數(shù)原理針對的是分類問題,其各種方法之間是相互獨(dú)立的,其中的任何一種方法都可以單獨(dú)完成這件事;而分步乘法計(jì)數(shù)原理針對的是分步問題,各個(gè)步驟之間相互依存,只有各個(gè)步驟都完成,才算完成這件事,單獨(dú)的一步或幾步不能完成這件事.(2)兩個(gè)計(jì)數(shù)原理的區(qū)別在于分類加法計(jì)數(shù)原理每次得到的都是最后結(jié)果,而分步乘法計(jì)數(shù)原理每步得到的都是中間結(jié)果,可以用下表表示:


計(jì)數(shù)原理的選擇:


如果完成一件事有n類辦法,這n類辦法彼此之間是相互獨(dú)立的,無論哪一類辦法中的哪一種方法都能完成這件事情,求完成這件事情的方法種數(shù),就用分類加法計(jì)數(shù)原理;如果完成一件事情要分成n個(gè)步驟,各個(gè)步驟都是不可或缺的,需要依次完成所有的步驟,才能完成這件事情,而完成每一個(gè)步驟各有若干種不同的方法,求完成這件事情的方法種數(shù),就用分步乘法計(jì)數(shù)原理,從思想方法的角度看,分類加法汁數(shù)原理是將問題進(jìn)行,分步乘法計(jì)數(shù)原理是將問題進(jìn)行,這兩種思想方法貫穿解決本章應(yīng)用問題的始終.



分步乘法計(jì)數(shù)原理的特點(diǎn):


分步乘法計(jì)數(shù)原理的特點(diǎn)是在所有的各步之中,每一步中都要使用一種方法才能完成要做的事情,可利用圖形來表示分步乘法計(jì)數(shù)原理,圖中的去強(qiáng)調(diào)要依次完成各個(gè)步驟才能完成要做的事情,從而共有種不同的方法可以完成這件事.


分步的原則:


應(yīng)用分步乘法計(jì)數(shù)原理解題時(shí)要注意以下幾點(diǎn):
①明確題目中所指的“完成一件事”是指什么事,單獨(dú)用題目中所給的某種方法是不是能完成這件事,也就是說,是否必須經(jīng)過幾步才能完成這件事;
②完成這件事需要分成若干個(gè)步驟,只有每個(gè)步驟都完成了,才算完成這件事,缺少任何一步,這件事就不可能完成;
③根據(jù)題意,正確分步,要求各步之間必須連續(xù),只有按照這n個(gè)步驟逐步地去做,才能完成這件事,各個(gè)步驟之中既不能重復(fù)也不能有遺漏.



分類加法計(jì)數(shù)原理的應(yīng)用:


根據(jù)已知條件確定好分類標(biāo)準(zhǔn)后,分類應(yīng)滿足:完成一件事的任何一種方法,必屬于某一類而且僅屬于某一類,即,是確定的,可相加的.在解題時(shí),應(yīng)首先分清楚怎樣才算完成這件事,完成這件事有n類途徑、手段、方法等,其中的每一種都可以獨(dú)立完成這件事.


分步乘法計(jì)數(shù)原理的應(yīng)用:


應(yīng)用分步乘法計(jì)數(shù)原理時(shí),關(guān)鍵是確定分步的步驟,必須是連續(xù)做完幾步,要不漏不重步,還要保證每個(gè)步驟之間是無關(guān)的.


兩個(gè)原理的綜合應(yīng)用:


兩個(gè)計(jì)數(shù)原理解決計(jì)數(shù)問題時(shí),最重要的是在開始計(jì)算之前要進(jìn)行仔細(xì)分析-----需要分類還是需要分步。
分類要做到“不重不漏”,分類后再分別對每一類進(jìn)行計(jì)數(shù),最后用分類加法計(jì)數(shù)原理求和,得到總數(shù)。
分步要做到“分步完整”,完成了所有步驟,恰好完成任務(wù),當(dāng)然步與步之間要相互獨(dú)立.分步后再計(jì)算每一步的方法數(shù),最后根據(jù)分步乘法計(jì)數(shù)原理,把完成每一步的方法數(shù)相乘,得到總數(shù).



本文來自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/559415.html

相關(guān)閱讀:變革學(xué)習(xí)方式 培養(yǎng)學(xué)生數(shù)學(xué)能力