特級(jí)教師談教學(xué)·張鶴
在數(shù)學(xué)復(fù)習(xí)中,我們必須要明確,存在的最大問(wèn)題是什么?阻礙學(xué)生提高數(shù)學(xué)成績(jī)的最大障礙是什么?唯有如此,才能真正提高效率,讓學(xué)生感受到數(shù)學(xué)復(fù)習(xí)的價(jià)值。
在目前的數(shù)學(xué)復(fù)習(xí)課上,學(xué)生的思維活動(dòng)還常常受制于教師,缺乏獨(dú)立解決數(shù)學(xué)問(wèn)題的思維過(guò)程和解決問(wèn)題的體驗(yàn),學(xué)生還不習(xí)慣自己對(duì)解決問(wèn)題的策略和方法作出選擇和判斷,也沒(méi)有形成自己的思維方式。許多數(shù)學(xué)基礎(chǔ)稍弱的學(xué)生更喜歡按照教師教給的步驟去理解和解決問(wèn)題;更喜歡通過(guò)“套”公式得到問(wèn)題的答案,通過(guò)背結(jié)論甚至背題型對(duì)應(yīng)的解法去解決數(shù)學(xué)問(wèn)題。這種在教師后面亦步亦趨的學(xué)生,不會(huì)獨(dú)立思考數(shù)學(xué)問(wèn)題的實(shí)質(zhì),不理解形成數(shù)學(xué)思維的重要意義。
以上這些現(xiàn)象,都是數(shù)學(xué)復(fù)習(xí)中存在的主要問(wèn)題。阻礙學(xué)生進(jìn)一步提高數(shù)學(xué)成績(jī)的最大障礙,是研究數(shù)學(xué)問(wèn)題的意識(shí)淡漠。許多學(xué)生總是將數(shù)學(xué)問(wèn)題的解決歸結(jié)為計(jì)算,甚至把數(shù)學(xué)成績(jī)不好的原因,歸結(jié)為在計(jì)算上出現(xiàn)了馬虎、做題的數(shù)量不夠、計(jì)算的熟練程度有欠缺等等。
教師在復(fù)習(xí)課上給學(xué)生留出思維活動(dòng)的時(shí)間和空間,不等于放棄教師的主導(dǎo)作用,相反,為了使得學(xué)生的思維活動(dòng)更有效,教師對(duì)在課堂上交流的問(wèn)題的選取以及對(duì)學(xué)生思維活動(dòng)的引導(dǎo)與評(píng)價(jià)是非常重要的。在學(xué)生的思維活動(dòng)中,有些方法可能根本解決不了他們面臨的數(shù)學(xué)問(wèn)題,但是教師要善于分析學(xué)生思維活動(dòng)中合理的部分,幫助學(xué)生尋找到最終能夠解決問(wèn)題的方法。也許學(xué)生獨(dú)立思考出來(lái)的方法,不是最佳的,甚至是行不通的,但這種思維的狀態(tài)卻是目前最為需要的。教師一定要保護(hù)學(xué)生思考數(shù)學(xué)問(wèn)題的積極性,充分認(rèn)識(shí)到學(xué)生獨(dú)立思考的價(jià)值,創(chuàng)造條件鼓勵(lì)學(xué)生積極思考。只有思維活動(dòng)充分展開(kāi)了,學(xué)生才能感受到數(shù)學(xué)復(fù)習(xí)的真正目的,也一定會(huì)體驗(yàn)到積極的數(shù)學(xué)思維是提高數(shù)學(xué)成績(jī)的必由之路。
許多學(xué)生理解的數(shù)學(xué)復(fù)習(xí)總是與解題相提并論,而解題又往往等同于計(jì)算,因而導(dǎo)致學(xué)生缺乏研究數(shù)學(xué)問(wèn)題的意識(shí)。這種意識(shí)的缺乏,帶來(lái)的最直接后果就是解決數(shù)學(xué)問(wèn)題能力的弱化。
提高學(xué)生研究問(wèn)題的能力,最重要的是要有研究問(wèn)題的意識(shí)。教師應(yīng)該在有限的復(fù)習(xí)課上,把研究意識(shí)的培養(yǎng)作為復(fù)習(xí)的重要任務(wù)之一。如給學(xué)生函數(shù)的解析式(不給出具體的問(wèn)題),讓學(xué)生分析這個(gè)函數(shù)的性質(zhì)是什么。讓學(xué)生經(jīng)歷研究函數(shù)性質(zhì)一般的思維過(guò)程:首先從這個(gè)函數(shù)的整體性質(zhì)入手,是否具有對(duì)稱(chēng)性;如果具有對(duì)稱(chēng)性,不論是關(guān)于直線對(duì)稱(chēng),還是關(guān)于點(diǎn)對(duì)稱(chēng),解決問(wèn)題的范圍就可以簡(jiǎn)化為原來(lái)范圍的一半,從而簡(jiǎn)化研究問(wèn)題的過(guò)程,這種對(duì)稱(chēng)性質(zhì)的特殊情況就是偶函數(shù)和奇函數(shù)的性質(zhì);如果明確了這個(gè)函數(shù)是否具備某種對(duì)稱(chēng)性之后,就應(yīng)該研究函數(shù)的單調(diào)性,掌握這個(gè)函數(shù)的變化狀態(tài);進(jìn)而研究函數(shù)的周期性,通過(guò)函數(shù)的解析式分析函數(shù)值的分布;在此基礎(chǔ)上,就可以根據(jù)研究出來(lái)的函數(shù)性質(zhì)畫(huà)出這個(gè)函數(shù)的示意圖。顧名思義,這個(gè)圖不是函數(shù)的真實(shí)圖形,僅僅是能夠直觀體現(xiàn)函數(shù)性質(zhì)的示意圖,而利用這樣的圖形已經(jīng)足以幫助學(xué)生理解并解決數(shù)學(xué)問(wèn)題了。
在立體幾何的復(fù)習(xí)中,要培養(yǎng)學(xué)生研究空間幾何體的意識(shí)。一些學(xué)生對(duì)于立體幾何的解答題,常常是匆匆掃一眼題目的條件,對(duì)所要面臨的幾何體還沒(méi)有太深刻的認(rèn)識(shí),就開(kāi)始解答題目的第一問(wèn),之后基本上就是答一問(wèn),看一眼題目中相關(guān)的條件,對(duì)幾何體的認(rèn)識(shí)往往局限在很小的范圍內(nèi),由于缺乏對(duì)幾何體的整體分析,也就很難對(duì)所面臨的問(wèn)題有一個(gè)圓滿(mǎn)的把握。為此,教師應(yīng)該以空間幾何體為載體,幫助學(xué)生掌握研究幾何體的基本方法:首先從圍成的空間幾何體的面去分析是什么樣的平面圖形,側(cè)面與底面具有怎樣的位置關(guān)系,側(cè)棱與底面具有怎樣的位置關(guān)系,進(jìn)而分析空間幾何體中比較重要的截面與其他面之間的位置關(guān)系、幾何體的棱與對(duì)角線之間的位置關(guān)系等等。要讓學(xué)生體會(huì)到,對(duì)于所面對(duì)的空間幾何體的線、面位置關(guān)系,能夠進(jìn)行比較細(xì)致的研究并作出準(zhǔn)確的判斷,是解決好空間幾何體的重要前提。
在平面解析幾何復(fù)習(xí)中,許多學(xué)生在認(rèn)識(shí)上有不少誤區(qū),最典型的是把平面解析幾何簡(jiǎn)單地歸結(jié)為計(jì)算,所謂的代數(shù)方法解決幾何問(wèn)題就是聯(lián)立方程組。因此,在最后的復(fù)習(xí)時(shí)間,教師要幫助學(xué)生正確地認(rèn)識(shí)和理解這門(mén)學(xué)科的思維特點(diǎn)和方法,學(xué)會(huì)從幾何對(duì)象的幾何圖形、曲線方程以及已知條件的代數(shù)數(shù)據(jù)去研究、分析幾何對(duì)象的幾何特征。只有將幾何的特征分析得非常充分,代數(shù)化的過(guò)程才可能更加簡(jiǎn)單,代數(shù)運(yùn)算的難度也才可能降低。
總之,盡管不同年級(jí)、不同單元的學(xué)習(xí)內(nèi)容有很大的差別,但是從思維層面上看,不難發(fā)現(xiàn)它們之間所具有的共性。這才是提升學(xué)生數(shù)學(xué)能力的關(guān)鍵。(作者 張鶴 單位系北京市海淀區(qū)教師進(jìn)修學(xué)校)
《中國(guó)教師報(bào)》6月15日第6版
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaozhong/830314.html
相關(guān)閱讀:在反思與創(chuàng)新過(guò)程中提高數(shù)學(xué)課堂教學(xué)效果