如何改善數(shù)學(xué)的解題能力?數(shù)學(xué)在命題方面千變?nèi)f化,知識(shí)點(diǎn)又非常容易綜合穿插,所以,對(duì)那些不擅長(zhǎng)整合知識(shí)、對(duì)數(shù)學(xué)概念缺乏理解的同學(xué)來(lái)講,難免會(huì)感到數(shù)學(xué)很“難"。本文將為同學(xué)介紹一套適合廣大學(xué)生使用的數(shù)學(xué)復(fù)習(xí)標(biāo)準(zhǔn)步驟。
一、解題思路的理解和來(lái)源
平時(shí)大家評(píng)論一個(gè)孩子“聰明”或者“不聰明”的依據(jù)是看這個(gè)孩子對(duì)某件事或很多事得反應(yīng)以及有沒(méi)有他自己的看法。如一個(gè)“聰明”的孩子,往往反應(yīng)快、思路清楚,有自己的主見(jiàn)。那么我們認(rèn)為“反應(yīng)快、思路清楚、有主見(jiàn)”是聰明的前提。學(xué)習(xí)成績(jī)好的同學(xué),反應(yīng)快、思路清楚、有主見(jiàn)就是他們的條件。
那么解題也如此,須反應(yīng)快、思路清楚、有主見(jiàn)。同一道題,不同的學(xué)生從不同的角度去理解,由不同的看法終匯聚成正確的解題過(guò)程,這是解題的選然。無(wú)論是推導(dǎo)、還是硬性套用、憑借經(jīng)驗(yàn)做題,都是思路的一種。有的同學(xué)由開(kāi)始思路不清漸漸轉(zhuǎn)變?yōu)榍宄,有的同學(xué)根本沒(méi)有思路,這就形成了做題的上的差距。
如果能教會(huì)給學(xué)生,在處理數(shù)學(xué)問(wèn)題上,短的思考路徑,并且清晰無(wú)比,這樣,每個(gè)學(xué)生都是“聰明的孩子”,在做題上就能攻無(wú)不克戰(zhàn)無(wú)不勝。
解題思路的來(lái)源就是對(duì)題的看法,也就是第一出發(fā)點(diǎn)在哪。
二、如何在短期內(nèi)訓(xùn)練解題能力
數(shù)學(xué)解題思想其實(shí)只要掌握一種即可,即須要性思維。這是解答數(shù)學(xué)試題的萬(wàn)用法門,也是直接、快捷的答題思想。什么是須要性思維?須要性思維就是通過(guò)所求結(jié)論或者某一限定條件尋求前提的思想。幾乎所有數(shù)學(xué)命題都可以用這一思想進(jìn)行破解。這里我用視頻來(lái)舉兩個(gè)簡(jiǎn)單的例子,說(shuō)明數(shù)學(xué)須要性思維是如何應(yīng)用的。
縱觀近幾年高考數(shù)學(xué)試題,可以看出試題加強(qiáng)了對(duì)知識(shí)點(diǎn)靈活應(yīng)用的考察。這就對(duì)考生的思維能力要求大大加強(qiáng)。如何才能改善思維能力,很多考生便依靠題海戰(zhàn)術(shù),寄希望多做題來(lái)應(yīng)對(duì)多變的考題,然而憑借題海戰(zhàn)術(shù)的功底仍然難以獲得科學(xué)的思維方式,以至收效甚微。主要的原因就是解題思路隨意造成的,并非所謂“不夠用功”等原因。由于思維能力的原因,考生在解答高考題時(shí)形成一定的障礙。主要表現(xiàn)在兩個(gè)方面,一是無(wú)法找到解題的切入點(diǎn),二是雖然找到解題的突破口,但做這做著就走不下去了。如何解決這兩大障礙呢?本章將介紹行之有效的方法,使考生獲得有益的啟示。
三.尋找解題途徑的基本方法——從求解(證)入手
遇到有一定難度的考題我們會(huì)發(fā)現(xiàn)出題者設(shè)置了種種障礙。從已知出發(fā),岔路眾多,順推下去越做越復(fù)雜,難得到答案,如果從問(wèn)題入手,尋找要想獲得所求,須要做什么,找到“需知”后,將“需知”作為新的問(wèn)題,直到與“已知“所能獲得的“可知”相溝通,將問(wèn)題解決。事實(shí)上,在不等式證明中采用的“分析法”就是這種思維的充分體現(xiàn),我們將這種思維稱為“逆向思維”——目標(biāo)前提性思維。
四.完成解題過(guò)程的關(guān)鍵——數(shù)學(xué)式子變形
解答高考數(shù)學(xué)試題遇到的第二障礙就是數(shù)學(xué)式子變形。一道數(shù)學(xué)綜合題,要想完成從已知到結(jié)論的過(guò)程,須經(jīng)過(guò)大量的數(shù)學(xué)式子變形,而這些變形僅靠大量的做題過(guò)程是無(wú)法真正掌握的,很多考生都有這樣的經(jīng)歷,在解一道復(fù)雜的考題時(shí),做不下去了,而回過(guò)頭來(lái)再看一看答案,才恍然大悟,解法這么簡(jiǎn)單,后悔莫及,埋怨自己怎么糊涂到?jīng)]有把式子再這么變一下呢?
其實(shí)數(shù)學(xué)解題的每一步推理和運(yùn)算,實(shí)質(zhì)都是轉(zhuǎn)換(變形).但是,轉(zhuǎn)換(變形)的目的是更好更快的解題,所以變形的方向選定是化繁為簡(jiǎn),化抽象為具體,化未知為已知,也就是創(chuàng)造條件向有利于解題的方向轉(zhuǎn)化.還須注意的是,一切轉(zhuǎn)換須是等價(jià)的,否則解答將出現(xiàn)錯(cuò)誤。解決數(shù)學(xué)問(wèn)題實(shí)際上就是在題目的已知條件和待求結(jié)論中架起聯(lián)系的橋梁,也就是在分析題目中已知與待求之間差異的基礎(chǔ)上,化歸和消除這些差異。尋找差異是變形依賴的原則,變形中一些規(guī)律性的東西需要總結(jié)。在后面的幾章中我們列舉的一些思維定勢(shì),就是在數(shù)學(xué)思想指導(dǎo)下總結(jié)出來(lái)的。在解答高考題中時(shí)刻都在進(jìn)行數(shù)學(xué)變形由復(fù)雜到簡(jiǎn)單,這也就是轉(zhuǎn)化,數(shù)學(xué)式子變形的思維方式:時(shí)刻關(guān)注所求與已知的差異。
五、夯實(shí)基礎(chǔ)----回歸課本
1、揭示規(guī)律----掌握解題方法
高考試題再難也逃不了課本揭示的思維方法及規(guī)律。我們說(shuō)回歸課本,不是簡(jiǎn)單的梳理知識(shí)點(diǎn)。課本中定理,公式推證的過(guò)程就蘊(yùn)含著重要的方法,而很多考生沒(méi)有充分暴露思維過(guò)程,沒(méi)有發(fā)覺(jué)其內(nèi)在思維的規(guī)律就去解題,而希望通過(guò)題海戰(zhàn)術(shù)去“悟”出某些道理,結(jié)果是題海沒(méi)少泡,卻總也不見(jiàn)成效,終只能留在理解的膚淺,僅會(huì)機(jī)械的模仿,思維水平低的地方。因此我們要側(cè)重基本概念,基本理論的剖析,達(dá)到以不變應(yīng)萬(wàn)變。
2、融會(huì)貫通---構(gòu)建網(wǎng)絡(luò)
在課本函數(shù)這章里,有很多重要結(jié)論,許多學(xué)生由于理解不深入,只靠死記硬背,后造成記憶不牢,考試時(shí)失分。在課本函數(shù)這章里,有很多重要結(jié)論,許多學(xué)生由于理解不深入,只靠死記硬背,后造成記憶不牢,考試時(shí)失分。
3、加強(qiáng)理解----改善能力
復(fù)習(xí)要真正的回到 重視 基礎(chǔ)的軌道 上來(lái)。沒(méi)有基礎(chǔ)談不到不到能力。這里的基礎(chǔ)不是指機(jī)械重復(fù)的訓(xùn)練,而是指要搞清基本原理,基本方法,體驗(yàn)知識(shí)形成過(guò)程以及對(duì)知識(shí)本質(zhì)意義的理解與感悟。只有深刻理解概念,才能抓住問(wèn)題本質(zhì),構(gòu)建知識(shí)網(wǎng)絡(luò)。
4、思維模式化----解題步驟固定化
解答數(shù)學(xué)試題有一定的規(guī)律可循,解題操作要有明確的思路和目標(biāo),要做到思維模式化。所謂模式化也就是解題步驟固定化,一般思維過(guò)程分為以下步驟:
(1)審題
(2)明確解題目標(biāo).關(guān)注已知與所求的差距,進(jìn)行數(shù)學(xué)式子變形(轉(zhuǎn)化),在需知與可知間架橋(缺什么補(bǔ)什么)
(3)求解要求解答清楚,簡(jiǎn)潔,正確,推理嚴(yán)密,運(yùn)算準(zhǔn)確,不跳步驟;表達(dá)規(guī)范,步驟完整
本文來(lái)自:逍遙右腦記憶 http://www.yy-art.cn/gaozhong/899136.html
相關(guān)閱讀:如何提高高考數(shù)學(xué)一輪復(fù)習(xí)效率