歡迎來到逍遙右腦記憶網(wǎng)-免費(fèi)提供各種記憶力訓(xùn)練學(xué)習(xí)方法!

高中數(shù)學(xué)公里定理順口溜

編輯: 路逍遙 關(guān)鍵詞: 學(xué)科記憶方法實(shí)例 來源: 逍遙右腦記憶


一、《集合與函數(shù)》

  內(nèi)容子交并補(bǔ)集,還有冪指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯
  復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓
  指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故
  函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對(duì)數(shù)
  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況求交集
  兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,Y=X是對(duì)稱軸
  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域
  冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù)
  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)

二、《三角函數(shù)》

  三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶增減現(xiàn)
  同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下弦切割
  中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是對(duì)角
  頂點(diǎn)任意一函數(shù),等于后面兩根除。誘導(dǎo)公式就是好,負(fù)化正后大化小
  變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變
  將其后者視銳角,符號(hào)原來函數(shù)判。兩角和的余弦值,化為單角好求值
  余弦積減正弦積,換角變形眾公式。和差化積須同名,互余角度變名稱
  計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著簡(jiǎn)易變
  逆反原則作指導(dǎo),升冪降次和差積。條件等式的證明,方程思想指路明
  萬能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用加巧用
 。奔佑嘞蚁胗嘞遥睖p余弦想正弦,冪升一次角減半,升冪降次它為范
  三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍
  利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集

三、《不等式》

  解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無理不等式,化為有理不等式
  高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大
  證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭(zhēng)高下
  直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法
  還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法

四、《數(shù)列》

  等差等比兩數(shù)列,通項(xiàng)公式N項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換
  數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換
  取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考
  一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化
  首先驗(yàn)證再假定,從K向著K加1,推論過程須詳盡,歸納原理來肯定

五、《復(fù)數(shù)》

  虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo)實(shí)虛部
  對(duì)應(yīng)復(fù)平面上點(diǎn),原點(diǎn)與它連成箭。箭桿與X軸正向,所成便是輻角度
  箭桿的長(zhǎng)即是模,常將數(shù)形來結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化試一試
  代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值周期現(xiàn)
  一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等來轉(zhuǎn)化
  利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形
  減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年模長(zhǎng)短
  三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開方極方便
  輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共軛
  兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別

六、《排列、組合、二項(xiàng)式定理》

  加法乘法兩原理,貫穿始終的法則。與序無關(guān)是組合,要求有序是排列
  兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問題須轉(zhuǎn)化
  排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮
  不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試
  關(guān)于二項(xiàng)式定理,中國楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式

七、《立體幾何》

  點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇怼>嚯x都從點(diǎn)出發(fā),角度皆為線線成
  垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)
  方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出的圖形
  立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題最關(guān)鍵
  異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問題一大片

八、《平面解析幾何》

  有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合稱典范
  笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者—一來對(duì)應(yīng),開創(chuàng)幾何新途徑
  兩種思想相輝映,化歸思想打前陣;都說待定系數(shù)法,實(shí)為方程組思想
  三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位置關(guān)系判
  四件工具是法寶,坐標(biāo)思想?yún)?shù)好;平面幾何不能丟,旋轉(zhuǎn)變換復(fù)數(shù)求
  解析幾何是幾何,得意忘形學(xué)不活。圖形直觀數(shù)入微,數(shù)學(xué)本是數(shù)形學(xué)


本文來自:逍遙右腦記憶 http://yy-art.cn/jiyi/xuekejiyi/362986.html

相關(guān)閱讀:如何巧妙記憶高中歷史時(shí)間?
藥理學(xué)記憶口訣
歷史記憶方法技巧
利用歸納的方法記憶文科知識(shí)(六)
濃縮記憶法助你記憶歷史知識(shí)