2016年中考數學模擬考試試題(有答案)

編輯: 路逍遙 關鍵詞: 中考復習 來源: 逍遙右腦記憶


學習是一個邊學新知識邊鞏固的過程,對學過的知識一定要多加練習,這樣才能進步。因此,精品編輯老師為大家整理了2016年中考數學模擬考試試題,供大家參考。

一、選擇題

1. (2016四川巴中,第8題3分)在Rt△ABC中,C=90,sinA=1/2 ,則tanB的值為()

A. 1B.3 C.1/2 D.2

考點:銳角三角函數.

分析:根據題意作出直角△ABC,然后根據sinA= ,設一條直角邊BC為5x,斜邊AB為13x,根據勾股定理求出另一條直角邊AC的長度,然后根據三角函數的定義可求出tanB.

解答:∵sinA= ,設BC=5x,AB=13x,則AC= =12x,

2. (2016山東威海,第8題3分)如圖,在下列網格中,小正方形的邊長均為1,點A、B、O都在格點上,則AOB的正弦值是( )

A.1 B. 1/2C. 3/5D.2/3

考點: 銳角三角函數的定義;三角形的面積;勾股定理

分析: 作ACOB于點C,利用勾股定理求得AC和AB的長,根據正弦的定義即可求解.

解答: 解:作ACOB于點C.

則AC= ,

3.(2016四川涼山州,第10題,4分)在△ABC中,若|cosA?|+(1?tanB)2=0,則C的度數是( )

A. 45 B. 60 C. 75 D. 105

考點: 特殊角的三角函數值;非負數的性質:絕對值;非負數的性質:偶次方;三角形內角和定理

分析: 根據非負數的性質可得出cosA及tanB的值,繼而可得出A和B的度數,根據三角形的內角和定理可得出C的度數.

解答: 解:由題意,得 cosA=,tanB=1,

A=60,B=45,

4.(2016甘肅蘭州,第5題4分)如圖,在Rt△ABC中,C=90,BC=3,AC=4,那么cosA的值等于()

A.1/2 B.3/5 C. 2D.1/5

考點: 銳角三角函數的定義;勾股定理.

分析: 首先運用勾股定理求出斜邊的長度,再利用銳角三角函數的定義求解.

解答: 解:∵在Rt△ABC中,C=90,AC=4,BC=3,

5.(2016廣州,第3題3分)如圖1,在邊長為1的小正方形組成的網格中, 的三個頂點均在格點上,則 ( ).

(A) (B) (C) (D)

【考點】正切的定義.

【分析】 .

【答案】 D

6.(2016浙江金華,第6題4分)如圖,點A(t,3)在第一象限,OA與x軸所夾的銳角為 ,則t的值是【 】

A.1 B.1.5 C.2 D.3

【答案】C.

【解析】

7.(2016濱州,第11題3分)在Rt△ACB中,C=90,AB=10,sinA= ,cosA= ,tanA= ,則BC的長為( )

A. 6 B. 7.5 C. 8 D. 12.5

考點: 解直角三角形

分析: 根據三角函數的定義來解決,由sinA= = ,得到BC= = .

解答: 解:∵C=90AB=10,

8.(2016揚州,第7題,3分)如圖,已知AOB=60,點P在邊OA上,OP=12,點M,N在邊OB上,PM=PN,若MN=2,則OM=()

A. 3 B. 4 C. 5 D. 6

(第1題圖)

考點: 含30度角的直角三角形;等腰三角形的性質

分析: 過P作PDOB,交OB于點D,在直角三角形POD中,利用銳角三角函數定義求出OD的長,再由PM=PN,利用三線合一得到D為MN中點,根據MN求出MD的長,由OD?MD即可求出OM的長.

解答: 解:過P作PDOB,交OB于點D,

在Rt△OPD中,cos60= = ,OP=12,

OD=6,

∵PM=PN,PDMN,MN=2,

9.(2016四川自貢,第10題4分)如圖,在半徑為1的⊙O中,AOB=45,則sinC的值為()

A.1 B. 1/2C. 2D.3

考點: 圓周角定理;勾股定理;銳角三角函數的定義

專題: 壓軸題.

分析: 首先過點A作ADOB于點D,由在Rt△AOD中,AOB=45,可求得AD與OD的長,繼而可得BD的長,然后由勾股定理求得AB的長,繼而可求得sinC的值.

解答: 解:過點A作ADOB于點D,

∵在Rt△AOD中,AOB=45,

OD=AD=OAcos45= 1= ,

BD=OB?OD=1? ,

AB= = ,

∵AC是⊙O的直徑,

10.(2016浙江湖州,第6題3分)如圖,已知Rt△ABC中,C=90,AC=4,tanA= ,則BC的長是()

A.2 B. 8 C. 2 D. 4

分析:根據銳角三角函數定義得出tanA= ,代入求出即可.

11.(2016廣西來賓,第17題3分)如圖,Rt△ABC中,C=90,B=30,BC=6,則AB的長為 4 .

考點: 解直角三角形.

分析: 根據cosB= 及特殊角的三角函數值解題.

解答: 解:∵cosB= ,即cos30= ,

12.(2016年貴州安順,第9題3分)如圖,在Rt△ABC中,C=90,A=30,E為AB上一點且AE:EB=4:1,EFAC于F,連接FB,則tanCFB的值等于()

A.30 A B.45 C.60 D.15

考點: 銳角三角函數的定義..

分析: tanCFB的值就是直角△BCF中,BC與CF的比值,設BC=x,則BC與CF就可以用x表示出來.就可以求解.

解答: 解:根據題意:在Rt△ABC中,C=90,A=30,

∵EFAC,

EF∥BC,

∵AE:EB=4:1,

=5,

= ,

設AB=2x,則BC=x,AC= x.

13.(2016年廣東汕尾,第7題4分)在Rt△ABC中,C=90,若sinA= ,則cosB的值是()

A. 1B.3 C. 2D.-1

分析:根據互余兩角的三角函數關系進行解答.

14.(2016畢節(jié)地區(qū),第15題3分)如圖是以△ABC的邊AB為直徑的半圓O,點C恰好在半圓上,過C作CDAB交AB于D.已知cosACD= ,BC=4,則AC的長為( )

A. 1 B.4

C. 3 D.2

考點: 圓周角定理;解直角三角形

分析: 由以△ABC的邊AB為直徑的半圓O,點C恰好在半圓上,過C作CDAB交AB于D.易得ACD=B,又由cosACD= ,BC=4,即可求得答案.

解答: 解:∵AB為直徑,

ACB=90,

ACD+BCD=90,

∵CDAB,

BCD+B=90,

ACD,

∵cosACD= ,

cosB= ,

tanB= ,

15.(2016年天津市,第2 題3分)cos60的值等于()

A. 1/2B. 1C.3 D.5

考點: 特殊角的三角函數值.

分析: 根據特殊角的三角函數值解題即可.

二、填空題

1. (2016年貴州黔東南11.(4分))cos60=.

考點: 特殊角的三角函數值.

分析: 根據特殊角的三角函數值計算.

2. (2016江蘇蘇州,第15題3分)如圖,在△ABC中,AB=AC=5,BC=8.若BPC=BAC,則tanBPC=.

考點: 銳角三角函數的定義;等腰三角形的性質;勾股定理

分析: 先過點A作AEBC于點E,求得BAE=BAC,故BPC=BAE.再在Rt△BAE中,由勾股定理得AE的長,利用銳角三角函數的定義,求得tanBPC=tanBAE= .

解答: 解:過點A作AEBC于點E,

∵AB=AC=5,

BE=BC=8=4,BAE=BAC,

∵BPC=BAC,

BPC=BAE.

在Rt△BAE中,由勾股定理得

3.(2016四川內江,第23題,6分)如圖,AOB=30,OP平分AOB,PCOB于點C.若OC=2,則PC的長是 .

考點: 含30度角的直角三角形;勾股定理;矩形的判定與性質.

專題: 計算題.

分析: 延長CP,與OA交于點Q,過P作PDOA,利用角平分線定理得到PD=PC,在直角三角形OQC中,利用銳角三角函數定義求出QC的長,在直角三角形QDP中,利用銳角三角函數定義表示出PQ,由QP+PC=QC,求出PC的長即可.

解答: 解:延長CP,與OA交于點Q,過P作PDOA,

∵OP平分AOB,PDOA,PCOB,

PD=PC,

在Rt△QOC中,AOB=30,OC=2,

QC=OCtan30=2 = ,APD=30,

在Rt△QPD中,cos30= = ,即PQ= DP= PC,

QC=PQ+PC,即 PC+PC= ,

4.(2016四川宜賓,第16題,3分)規(guī)定:sin(?x)=?sinx,cos(?x)=cosx,sin(x+y)=sinxcosy+cosxsiny.

據此判斷下列等式成立的是 ②③④ (寫出所有正確的序號)

①cos(?60

②sin75

③sin2x=2sinx

④sin(x?y)=sinxcosy?cosxsiny.

考點: 銳角三角函數的定義;特殊角的三角函數值.

專題: 新定義.

分析: 根據已知中的定義以及特殊角的三角函數值即可判斷.

解答: 解:①cos(?60)=cos60=,命題錯誤;

②sin75=sin(30+45)=sin30cos45+cos30sin45= + = + = ,命題正確;

③sin2x=sinxcosx+cosxsinx?2sinxcosx,故命題正確;

④sin(x?y)=sinxcos(?y)+cosxsin(?y)=sinxcosy?cosxsiny,命題正確.

5.(2016甘肅白銀、臨夏,第15題4分)△ABC中,A、B都是銳角,若sinA= ,cosB=,則C= .

考點: 特殊角的三角函數值;三角形內角和定理.

分析: 先根據特殊角的三角函數值求出A、B的度數,再根據三角形內角和定理求出C即可作出判斷.

解答: 解:∵△ABC中,A、B都是銳角sinA= ,cosB=,

B=60.

6. ( 2016廣西賀州,第18題3分)網格中的每個小正方形的邊長都是1,△ABC每個頂點都在網格的交點處,則sinA=.

考點: 銳角三角函數的定義;三角形的面積;勾股定理.

分析: 根據正弦是角的對邊比斜邊,可得答案.

解答: 解:如圖,作ADBC于D,CEAB于E,

由勾股定理得AB=AC=2 ,BC=2 ,AD=3 ,

由BCAD=ABCE,

為大家推薦的2016年中考數學模擬考試試題的內容,還滿意嗎?相信大家都會仔細閱讀,加油哦!


本文來自:逍遙右腦記憶 http://www.yy-art.cn/zhongkao/368494.html

相關閱讀:名師解答:2015中考該如何應對這場戰(zhàn)斗