【—三角函數(shù)公式】上一章節(jié)為大家整合的三倍角公式的推導(dǎo)過程,接下來繼續(xù)為大家?guī)砣呛瘮?shù)之三倍角公式推導(dǎo)第二部分,請大家做好筆記了。
三倍角公式推導(dǎo)
cos3a=4cos³a-3cosa
=4cosa(cos²a-3/4)
=4cosa[cos²a-(√3/2)²]
=4cosa(cos²a-cos²30°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
看過三倍角公式推導(dǎo)第二部分后,相信各位同學(xué)們都能認(rèn)真記憶,靈活運(yùn)用了吧。
本文來自:逍遙右腦記憶 http://yy-art.cn/chuzhong/206815.html
相關(guān)閱讀:九年級數(shù)學(xué)教學(xué)實(shí)踐與反思