高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)知識點(diǎn)排列組合公式

編輯: 逍遙路 關(guān)鍵詞: 高二學(xué)習(xí)指導(dǎo) 來源: 高中學(xué)習(xí)網(wǎng)

你還在為高中數(shù)學(xué)學(xué)習(xí)而苦惱嗎?別擔(dān)心,看了“高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)知識點(diǎn)排列組合公式”以后你會有很大的收獲:

高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)知識點(diǎn)排列組合公式

排列組合公式/排列組合計(jì)算公式

排列P------和順序有關(guān)

組合C-------不牽涉到順序的問題

排列分順序,組合不分

例如把5本不同的書分給3個(gè)人,有幾種分法."排列"

把5本書分給3個(gè)人,有幾種分法"組合"

1.排列及計(jì)算公式

從n個(gè)不同元素中,任取m(m≤n)個(gè)元素按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有排列的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的排列數(shù),用符號p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

2.組合及計(jì)算公式

從n個(gè)不同元素中,任取m(m≤n)個(gè)元素并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合;從n個(gè)不同元素中取出m(m≤n)個(gè)元素的所有組合的個(gè)數(shù),叫做從n個(gè)不同元素中取出m個(gè)元素的組合數(shù).用符號

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);

3.其他排列與組合公式

從n個(gè)元素中取出r個(gè)元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

n個(gè)元素被分成k類,每類的個(gè)數(shù)分別是n1,n2,...nk這n個(gè)元素的全排列數(shù)為

n!/(n1!*n2!*...*nk!).

k類元素,每類的個(gè)數(shù)無限,從中取出m個(gè)元素的組合數(shù)為c(m+k-1,m).

排列(Pnm(n為下標(biāo),m為上標(biāo)))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)。ㄗⅲ海∈请A乘符號);Pnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

組合(Cnm(n為下標(biāo),m為上標(biāo)))

Cnm=Pnm/Pmm;Cnm=n!/m。╪-m)!;Cnn(兩個(gè)n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

2008-07-0813:30

公式P是指排列,從N個(gè)元素取R個(gè)進(jìn)行排列。公式C是指組合,從N個(gè)元素取R個(gè),不進(jìn)行排列。N-元素的總個(gè)數(shù)R參與選擇的元素個(gè)數(shù)!-階乘,如9。9*8*7*6*5*4*3*2*1

從N倒數(shù)r個(gè),表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);

因?yàn)閺膎到(n-r+1)個(gè)數(shù)為n-(n-r+1)=r

舉例:

Q1:有從1到9共計(jì)9個(gè)號碼球,請問,可以組成多少個(gè)三位數(shù)?

A1:123和213是兩個(gè)不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計(jì)算范疇。

上問題中,任何一個(gè)號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個(gè)位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9*8*7個(gè)三位數(shù)。計(jì)算公式=P(3,9)=9*8*7,(從9倒數(shù)3個(gè)的乘積)

Q2:有從1到9共計(jì)9個(gè)號碼球,請問,如果三個(gè)一組,代表“三國聯(lián)盟”,可以組合成多少個(gè)“三國聯(lián)盟”?

A2:213組合和312組合,代表同一個(gè)組合,只要有三個(gè)號碼球在一起即可。即不要求順序的,屬于“組合C”計(jì)算范疇。

上問題中,將所有的包括排列數(shù)的個(gè)數(shù)去除掉屬于重復(fù)的個(gè)數(shù)即為最終組合數(shù)C(3,9)=9*8*7/3*2*1

排列、組合的概念和公式典型例題分析

例1設(shè)有3名學(xué)生和4個(gè)課外小組.(1)每名學(xué)生都只參加一個(gè)課外小組;(2)每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加.各有多少種不同方法?

解(1)由于每名學(xué)生都可以參加4個(gè)課外小組中的任何一個(gè),而不限制每個(gè)課外小組的人數(shù),因此共有種不同方法.

(2)由于每名學(xué)生都只參加一個(gè)課外小組,而且每個(gè)小組至多有一名學(xué)生參加,因此共有種不同方法.

點(diǎn)評由于要讓3名學(xué)生逐個(gè)選擇課外小組,故兩問都用乘法原理進(jìn)行計(jì)算.

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

解依題意,符合要求的排法可分為第一個(gè)排、、中的某一個(gè),共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

∴符合題意的不同排法共有9種.

點(diǎn)評按照分“類”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計(jì)數(shù)問題的一種數(shù)學(xué)模型.

例3判斷下列問題是排列問題還是組合問題?并計(jì)算出結(jié)果.

(1)高三年級學(xué)生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?

(2)高二年級數(shù)學(xué)課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法?

(3)有2,3,5,7,11,13,17,19八個(gè)質(zhì)數(shù):①從中任取兩個(gè)數(shù)求它們的商可以有多少種不同的商?②從中任取兩個(gè)求它的積,可以得到多少個(gè)不同的積?

(4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題.其他類似分析.

(1)①是排列問題,共用了封信;②是組合問題,共需握手(次).

(2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.

(3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.

(4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.

例4證明.

證明左式

右式.

∴等式成立.

點(diǎn)評這是一個(gè)排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化.

例5化簡.

解法一原式

解法二原式

點(diǎn)評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個(gè)性質(zhì),都使變形過程得以簡化.

例6解方程:(1);(2).

解(1)原方程

解得.

(2)原方程可變?yōu)?/p>

∵,,

∴原方程可化為.

即,解得

通過閱讀“高二數(shù)學(xué)學(xué)習(xí):高二數(shù)學(xué)知識點(diǎn)排列組合公式”這篇文章,小編相信大家對高中數(shù)學(xué)的學(xué)習(xí)又有了更進(jìn)一步的了解,希望大家學(xué)習(xí)輕松愉快!


本文來自:逍遙右腦記憶 http://yy-art.cn/gaoer/116189.html

相關(guān)閱讀:高二物理怎么學(xué) 高二物理學(xué)習(xí)建議