一、經(jīng)典證明方法細(xì)講
方法一:
作四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c.把它們拼成如圖那樣的一個(gè)多邊形,使D、E、F在一條直線上.過(guò)C作AC的延長(zhǎng)線交DF于點(diǎn)P.
∵D、E、F在一條直線上,且RtΔGEF≌RtΔEBD,
∴∠EGF=∠BED,
∵∠EGF+∠GEF=90°,
∴∠BED+∠GEF=90°,
∴∠BEG=180°—90°=90°
又∵AB=BE=EG=GA=c,
∴ABEG是一個(gè)邊長(zhǎng)為c的正方形.
∴∠ABC+∠CBE=90°
∵RtΔABC≌RtΔEBD,
∴∠ABC=∠EBD.
∴∠EBD+∠CBE=90°
即∠CBD=90°
又∵∠BDE=90°,∠BCP=90°,
BC=BD=a.
∴BDPC是一個(gè)邊長(zhǎng)為a的正方形.
同理,HPFG是一個(gè)邊長(zhǎng)為b的正方形.
設(shè)多邊形GHCBE的面積為S,則
,
∴BDPC的面積也為S,HPFG的面積也為S由此可推出:a^2+b^2=c^2
方法二
作兩個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b(b>a),斜邊長(zhǎng)為c.再做一個(gè)邊長(zhǎng)為c的正方形.把它們拼成如圖所示的多邊形.
分別以CF,AE為邊長(zhǎng)做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直線上,
∵CJ=CF=a,CB=CD=c,
∠CJB=∠CFD=90°,
∴RtΔCJB≌RtΔCFD,
同理,RtΔABG≌RtΔADE,
∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE
∴∠ABG=∠BCJ,
∵∠BCJ+∠CBJ=90°,
∴∠ABG+∠CBJ=90°,
∵∠ABC=90°,
∴G,B,I,J在同一直線上,
所以a^2+b^2=c^2
二、勾股數(shù)的相關(guān)介紹
①觀察3,4,5;5,12,13;7,24,25;…發(fā)現(xiàn)這些勾股數(shù)都是奇數(shù),且從3起就沒(méi)有間斷過(guò)。計(jì)算0.5(9-1),0.5(9+1)與0.5(25-1),0.5(25+1),并根據(jù)你發(fā)現(xiàn)的規(guī)律寫(xiě)出分別能表示7,24,25的股和弦的算式。
、诟鶕(jù)①的規(guī)律,用n的代數(shù)式來(lái)表示所有這些勾股數(shù)的勾、股、弦,合情猜想他們之間的兩種相等關(guān)系,并對(duì)其中一種猜想加以說(shuō)明。
、劾^續(xù)觀察4,3,5;6,8,10;8,15,17;…可以發(fā)現(xiàn)各組的第一個(gè)數(shù)都是偶數(shù),且從4起也沒(méi)有間斷過(guò),運(yùn)用上述類似的探索方法,之間用m的代數(shù)式來(lái)表示它們的股合弦。]在一個(gè)三角形中,兩條邊的平方和等于另一條邊的平方,那么這個(gè)三角形就是直角三角形。
三、勾股定理的命題方向
命題1:以已知線段為邊,求作一等邊三角形。
命題2:求以已知點(diǎn)為端點(diǎn),作一線段與已知線段相等。
命題3:已知大小兩線段,求在大線段上截取一線段與小線段相等。
命題4:兩三角形的兩邊及其夾角對(duì)應(yīng)相等,則這兩個(gè)三角形全等。
命題5:等腰三角形兩底角相等。
本文來(lái)自:逍遙右腦記憶 http://yy-art.cn/gaoer/268043.html
相關(guān)閱讀:高二數(shù)學(xué)如何提高